Skip to article frontmatterSkip to article content
Tutorial

Majorisation of Vectors

Abstract

The conditions for one vector to majorisation another and for a function to be Schur-convex.

Keywords:Vectorsmajorisation.

Let x,y  Rn\bm{x}, \bm{y}~\in~\mathbb{R}^{n} with components (x1,x2,,xn)(x_1, x_2, \ldots, x_n) and (y1,y2,,yn)(y_1, y_2, \ldots, y_n) respectively.

If x\bm{x} majorises y\bm{y}, then y\bm{y} can be considered to be more mixed or closer to the maximally mixed vector, I=(1/n,1/n,,1/n)I = (1/n, 1/n, \ldots, 1/n), then x\bm{x}.

If x\bm{x} majorises y\bm{y} then it is typically denoted by xy\bm{x} \succ \bm{y}.

Majorisation Conditions

x\bm{x} majorises y\bm{y}:

ikxiikyi   k=1,2,,n1 with inxi=inyi.\sum^{k}_{i} x^{\downarrow}_{i} \geq \sum^{k}_{i} y^{\downarrow}_{i} ~~ \forall ~ k = 1,2, \ldots, n-1 ~ \textrm{with}~ \sum_{i}^{n} x_{i} = \sum_{i}^{n} y_{i}.

where xix^{\downarrow}_{i} and yiy^{\downarrow}_{i} are the components of x\bm{x} and y\bm{y} respectively, ordered in non-increasing order, such that xixi+1  ix_i \geq x_{i+1}~\forall~i.

Ax=y,  AI=I.A \bm{x} = \bm{y}, ~~ A I = I.

(where the second condition ensures AA needs to be doubly stochastic).

Schur-convex Functions

A function f:RnRf: \mathbb{R}^{n} \rightarrow \mathbb{R} is called Schur-convex if and only if

xy    f(x)f(y).\bm{x} \succ \bm{y} \implies f(\bm{x}) \geq f(\bm{y}).

A function f:RnRf: \mathbb{R}^{n} \rightarrow \mathbb{R} is called Schur-concave if and only if

xy    f(x)f(y).\bm{x} \succ \bm{y} \implies f(\bm{x}) \leq f(\bm{y}).