Skip to article frontmatterSkip to article content

Quantum Entropy Functions

Abstract

Some Quantum entropy functions and their properties are given.

Keywords:EntropyRelative EntropyRényi Entropies.

Von Neumann Entropy

Let ρ\rho be a quantum state. The Von Neumann entropy of of ρ\rho is given by

S(ρ)=tr(ρlog(ρ))S(\rho) = -\textrm{tr}(\rho \log (\rho))

It can be thought of as a measure of how far from a pure state a given state ρ\rho is.

Properties
  1. S(ρ)0S(\rho) \geq 0 where S(ρ)=0S(\rho)=0 iif ρ\rho is a pure state.
  2. maxρS(ρ)=logd \max_{\rho} S(\rho)= \log{d} where dd is the dimension of the space. This occurs when ρ\rho is maximally mixed.
  3. S(UρU)=S(ρ)S(U \rho U^{\dagger}) = S(\rho) where UU=UU=IUU^{\dagger} = U^{\dagger}U = \mathbb{I}.
  4. If ipi=1\sum_{i} p_i = 1 then
S(ipiρi)ipiS(ρi).S \bigg( \sum_{i} p_{i} \rho_i \bigg) \geq \sum_{i} p_{i} S(\rho_{i}).
  1. S(ρσ)=S(ρ)S(σ)S(\rho \otimes \sigma) = S(\rho) \otimes S(\sigma).
  2. S(ρAB)S(ρA)+S(ρB)S(\rho_{AB}) \leq S(\rho_{A}) + S(\rho_{B}), where ρA=trB(ρAB)\rho_{A} = \textrm{tr}_{B}(\rho_{AB}), etc.
  3. S(ρAB)S(ρA)S(ρB)S(\rho_{AB}) \geq \vert S(\rho_{A}) - S(\rho_{B}) \vert.

Quantum Relative Entropy

Let ρ,σ\rho, \sigma be quantum states. The quantum relative entropy is given by

S(ρσ)=tr(ρlog(ρ)ρlog(σ)).S( \rho \vert \vert \sigma) = \textrm{tr} \big( \rho \log(\rho) - \rho \log(\sigma)).

if supp(ρ)supp(σ)\textrm{supp}(\rho) \subseteq \textrm{supp}(\sigma), it is defined as ++ \infty otherwise.

It can be thought of as a measure of how similar two states ρ\rho and σ\sigma are.

Properties
  1. S(ρσ)0S( \rho \vert \vert \sigma) \geq 0
  2. S(ρσ)S(σρ)S( \rho \vert \vert \sigma) \neq S( \sigma \vert \vert \rho)
  3. If E\mathcal{E} is a quantum channel then
S(ρσ)S(E(ρ)E(σ)).S( \rho \vert \vert \sigma) \geq S( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).
  1. S(ρI/d)=log(d)S(ρ)S( \rho \vert \vert \mathbb{I}/d) = \log(d) - S(\rho)
  2. If ipi=1\sum_{i} p_i = 1 then
S(ipiρiipiσi)ipiS(ρiσi)S \bigg( \sum_{i} p_i \rho_i \vert \vert \sum_i p_i \sigma_i \bigg) \leq \sum_i p_i S(\rho_i \vert \vert \sigma_i)

Quantum α\alpha-Rényi Entropies

Let ρ\rho be a quantum state, the α\alpha-Rényi entropy of ρ\rho is given by

Sα=11αlog(tr(ρα)), α(0,1)(1,).S_{\alpha} = \frac{1}{1-\alpha} \log(\textrm{tr}(\rho^{\alpha})), ~ \alpha \in (0,1) \cap (1, \infty).

These are a set of functions that generalise entropy functions (such as the Von Neumann Entropy) by satisfying many of the same properties for all α\alpha.

In the limit of α1\alpha \rightarrow 1 the α\alpha-Rényi entropy tends to the Von Neumann Entropy,

S(ρ)=limα1Sα(ρ).S(\rho) = \lim_{\alpha \rightarrow 1} S_{\alpha}(\rho).
Properties
  1. Sα(ρ)0S_\alpha(\rho) \geq 0 where Sα(ρ)=0S_\alpha(\rho)=0 iif ρ\rho is a pure state.
  2. maxρSα(ρ)=logd \max_{\rho} S_\alpha(\rho)= \log{d} where dd is the dimension of the space. This occurs when ρ\rho is maximally mixed.
  3. Sα(UρU)=Sα(ρ)S_\alpha(U \rho U^{\dagger}) = S_\alpha(\rho) where UU=UU=IUU^{\dagger} = U^{\dagger}U = \mathbb{I}.
  4. If ipi=1\sum_{i} p_i = 1 then
Sα(ipiρi)ipiSα(ρi).\begin{align*} S_\alpha \bigg( \sum_{i} p_{i} \rho_i \bigg) \geq \sum_{i} p_{i} S_\alpha(\rho_{i}). \end{align*}
  1. Sα(ρσ)=Sα(ρ)Sα(σ)S_\alpha(\rho \otimes \sigma) = S_\alpha(\rho) \otimes S_\alpha(\sigma).
  2. Sα(ρ)S0(ρB)Sα(ρAB)Sα(ρA)+S0(ρB)S_\alpha(\rho) - S_0(\rho_{B}) \leq S_\alpha(\rho_{AB}) \leq S_\alpha(\rho_{A}) + S_0(\rho_{B})
  3. Sα1(ρ)Sα2(ρ)S_{\alpha_1}(\rho) \geq S_{\alpha_2}(\rho) for 1<α1α21 < \alpha_1 \leq \alpha_2 .

Quantum Relative α\alpha-Rényi Entropies

Let ρ,σ\rho, \sigma be quantum states. The quantum relative α\alpha-Rényi entropy is given by

Sα(ρσ)=11αlog[tr(ρασ1α)]S_{\alpha}(\rho \vert \vert \sigma) = \frac{1}{1-\alpha} \log \big[ \textrm{tr} \big( \rho^{\alpha} \sigma^{1-\alpha} \big) \big]

The following entropy functions are limits of the quantum relative α\alpha-Rényi entropies:

Properties
  1. Sα(ρσ)0S_{\alpha}(\rho \vert \vert \sigma) \geq 0 with Sα(ρσ)=0S_{\alpha}(\rho \vert \vert \sigma)=0 iif ρ=σ\rho=\sigma.
  2. If E\mathcal{E} is a quantum channel then
Sα(ρσ)Sα(E(ρ)E(σ)).S_{\alpha}(\rho \vert \vert \sigma) \geq S_{\alpha}( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).

Max Relative Entropy

Let ρ,σ\rho, \sigma be two operators such that ρ0, tr(ρ)=1\rho \geq 0, ~\textrm{tr}(\rho)=1 and σ0\sigma \geq 0. The max relative entropy is given by

Dmax(ρσ)=log[min{λ : ρλσ}]D_{\textrm{max}}(\rho \vert \vert \sigma) = \log \big[ \textrm{min} \{ \lambda~:~\rho \leq \lambda \sigma \} \big]

or

Dmax(ρσ)=log[μmax(σ12ρσ12)]D_{\textrm{max}}(\rho \vert \vert \sigma) = \log \big[ \mu_{max} (\sigma^{\frac{1}{2}} \rho \sigma^{\frac{1}{2}} ) \big]

where μmax(A)\mu_{max}(A) is the maximum eigenvalue of the operator AA if supp(ρ)supp(σ)\textrm{supp}(\rho) \subseteq \textrm{supp}(\sigma), it is defined as ++ \infty otherwise.

Properties
  1. Dmax(ρσ)0D_{\textrm{max}}( \rho \vert \vert \sigma) \geq 0 with Dmax(ρσ)=0D_{\textrm{max}}(\rho \vert \vert \sigma)=0 if and only if ρ=σ\rho=\sigma and both are states.
  2. If E\mathcal{E} is a quantum channel then
Dmax(ρσ)Dmax(E(ρ)E(σ)).D_{\textrm{max}}( \rho \vert \vert \sigma) \geq D_{\textrm{max}}( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).
  1. If ρ=inpiρi\rho = \sum_{i}^{n} p_i \rho_i and σ=inqiσ1\sigma = \sum_i^{n} q_i \sigma_1 are two mixtures, then
Dmax(ρσ)maxiDmax(ρiσi)D_{\textrm{max}}(\rho \vert \vert \sigma) \leq max_{i} D_{\textrm{max}}(\rho_i \vert \vert \sigma_i)
  1. Dmax(ρσ)S(ρσ)D_{\textrm{max}}(\rho \vert \vert \sigma) \geq S(\rho \vert \vert \sigma)
  2. Dmax(UρUUσU)=Dmax(ρσ)D_{\textrm{max}}(U \rho U^{\dagger} \vert \vert U \sigma U^{\dagger}) = D_{\textrm{max}}(\rho \vert \vert \sigma)
  3. Dmax(ρσ)logμmin(σ)D_{\textrm{max}}(\rho \vert \vert \sigma) \leq - \log{\mu_{min}(\sigma)}
  4. Dmax(ρ1ρ2σ1σ2)=Dmax(ρ1σ2)+Dmax(ρ2σ2)D_{\textrm{max}}(\rho_1 \otimes \rho_2 \vert \vert \sigma_1 \otimes \sigma_2) = D_{\textrm{max}}(\rho_1 \vert \vert \sigma_2) + D_{\textrm{max}}(\rho_2 \vert \vert \sigma_2)
  5. Dmax(A:B)=Dmax(ρABρAρB)D_{\textrm{max}}(A:B) = D_{\textrm{max}}(\rho_{AB} \vert \vert \rho_A \otimes \rho_B)
  • A mutual information like quantity

Min Relative Entropy

Let ρ,σ\rho, \sigma be two operators such that ρ0, tr(ρ)=1\rho \geq 0, ~\textrm{tr}(\rho)=1 and σ0\sigma \geq 0. The min relative entropy is given by

Dmin(ρσ)=log[Tr(Πρσ)]D_{\textrm{min}}(\rho \vert \vert \sigma) = - \log \big[ \textrm{Tr} \big( \Pi_{\rho} \sigma \big) \big]

where Πρ\Pi_{\rho} is the projector onto the support of ρ\rho if supp(ρ)supp(σ)\textrm{supp}(\rho) \subseteq \textrm{supp}(\sigma).

Note that

Dmin(ρσ)=limα0+Sα(ρσ)D_{\textrm{min}}( \rho \vert \vert \sigma) = \lim_{\alpha \rightarrow 0^+} S_{\alpha}(\rho \vert \vert \sigma)
Properties
  1. Dmin(ρσ)0D_{\textrm{min}}( \rho \vert \vert \sigma) \geq 0 with Dmin(ρσ)=0D_{\textrm{min}}(\rho \vert \vert \sigma)=0 if ρ=σ\rho=\sigma and both are states, or supp(ρ)=supp(σ)\textrm{supp}(\rho)=\textrm{supp}(\sigma). In general, Dmin(ρσ)=0D_{\textrm{min}}( \rho \vert \vert \sigma)=0 if ρ\rho and σ\sigma have identical supports.
  2. Dmin(ρσ)Dmax(ρσ)D_{\textrm{min}}( \rho \vert \vert \sigma) \leq D_{\textrm{max}}( \rho \vert \vert \sigma)
  3. If E\mathcal{E} is a quantum channel then
Dmin(ρσ)Dmin(E(ρ)E(σ)).D_{\textrm{min}}( \rho \vert \vert \sigma) \geq D_{\textrm{min}}( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).
  1. If ρ=inpiρi\rho = \sum_{i}^{n} p_i \rho_i and σ=inpiσ1\sigma = \sum_i^{n} p_i \sigma_1 are two mixtures, then
Dmin(ρσ)ipiDmin(ρiσi)D_{\textrm{min}}(\rho \vert \vert \sigma) \leq \sum_i p_i D_{\textrm{min}}(\rho_i \vert \vert \sigma_i)
  1. Dmin(ρσ)S(ρσ)D_{\textrm{min}}(\rho \vert \vert \sigma) \leq S(\rho \vert \vert \sigma)
  2. Dmin(UρUUσU)=Dmin(ρσ)D_{\textrm{min}}(U \rho U^{\dagger} \vert \vert U \sigma U^{\dagger}) = D_{\textrm{min}}(\rho \vert \vert \sigma)
  3. Dmin(ρσ)logμmin(σ)D_{\textrm{min}}(\rho \vert \vert \sigma) \leq - \log{\mu_{min}(\sigma)}
  4. Dmin(A:B)=Dmin(ρABρAρB)D_{\textrm{min}}(A:B) = D_{\textrm{min}}(\rho_{AB} \vert \vert \rho_A \otimes \rho_B)
  • A mutual information like quantity

Quantum Sandwiched α\alpha-Rényi Entropies

Let ρ,σ\rho, \sigma be quantum states. The quantum quantum sandwiched α\alpha-Rényi entropy is given by

Dα(ρσ)=11αlog[tr(σ1α2αρσ1α2α)α].D_{\alpha}( \rho \vert \vert \sigma) = \frac{1}{1-\alpha} \log { \bigg[ \textrm{tr} \big( \sigma^{\frac{1-\alpha}{2 \alpha}} \rho \sigma^{\frac{1-\alpha}{2 \alpha}} \big)^{\alpha} \bigg] } .

if supp(ρ)supp(σ)\textrm{supp}(\rho) \subseteq \textrm{supp}(\sigma), it is defined as ++ \infty otherwise.

Properties
  1. Dα(ρσ)0D_\alpha(\rho \vert \vert \sigma) \geq 0 where Dα(ρσ)D_\alpha(\rho \vert \vert \sigma) iif ρ=σ\rho=\sigma.
  2. If E\mathcal{E} is a quantum channel and α[12,1)\alpha \in [\frac{1}{2}, 1) and (1,)(1, \infty) then
Dα(ρσ)Dα(E(ρ)E(σ)).D_{\alpha}( \rho \vert \vert \sigma) \geq D_{\alpha}( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).
  1. Dα(ρσ)Dβ(ρσ)D_{\alpha}(\rho \vert \vert \sigma) \geq D_{\beta}(\rho \vert \vert \sigma) if αβ\alpha \geq \beta.

The following entropy functions are limits of the quantum sandwiched α\alpha-Rényi entropies:

Min Relative Entropy

Let ρ,σ\rho, \sigma be two states, the min relative entropy is given by

Dmin(ρσ)=log[Tr(ρσ)2]D_{\textrm{min}}(\rho \vert \vert \sigma) = - \log \big[ \textrm{Tr} \big( \sqrt{\rho} \sqrt{\sigma} \big)^{2} \big]
Properties
  1. Dmin(ρσ)0D_{\textrm{min}}( \rho \vert \vert \sigma) \geq 0 with Dmin(ρσ)=0D_{\textrm{min}}(\rho \vert \vert \sigma)=0 iif ρ=σ\rho=\sigma.
  2. If E\mathcal{E} is a quantum channel then
Dmin(ρσ)Dmin(E(ρ)E(σ)).D_{\textrm{min}}( \rho \vert \vert \sigma) \geq D_{\textrm{min}}( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).

Hypothesis Testing Relative Entropy

Let ρ,σ\rho, \sigma be two states, the hypothesis testing relative entropy

DHϵ(ρσ)loginf0QI,tr[Qρ]1ϵtr[Qσ]D_{H}^{\epsilon}(\rho \vert \vert \sigma) \coloneqq - \log \inf_{ \substack{0 \leq Q \leq \mathbb{I}, \\ \textrm{tr}[ Q \rho ] \geq 1 - \epsilon}} \textrm{tr}\big[Q \sigma \big]
Properties
  1. DHϵ(ρσ)0D_{H}^{\epsilon}(\rho \vert \vert \sigma) \geq 0, where DHϵ(ρσ)=0D_{H}^{\epsilon}(\rho \vert \vert \sigma) = 0 iif ρ=σ\rho = \sigma.
  2. If E\mathcal{E} is a quantum channel then
DHϵ(ρσ)DHϵ(E(ρ)E(σ)).D_{H}^{\epsilon}(\rho \vert \vert \sigma) \geq D_{H}^{\epsilon}( \mathcal{E}(\rho) \vert \vert \mathcal{E}(\sigma)).
  1. Let Hb()H_b(\cdot) be the binary entropy function then
DHϵ(ρσ)(S(ρσ)+Hb(ϵ))1ϵ.D_{H}^{\epsilon}(\rho \vert \vert \sigma) \leq \frac{ \bigg( S(\rho \vert \vert \sigma ) + H_b(\epsilon) \bigg)}{1 - \epsilon}.
  1. For any ϵ(0,1) \epsilon \in (0,1) in
limn1nDHϵ(ρnσn)=S(ρσ).\lim_{n \rightarrow \infty} \frac{1}{n} D_{H}^{\epsilon}(\rho^{\otimes n} \vert \vert \sigma^{\otimes n}) = S(\rho \vert \vert \sigma).
  • This is the Quantum Stein’s Lemma
References
  1. Datta, N. (2009). Min- and Max-Relative Entropies and a New Entanglement Monotone. IEEE Transactions on Information Theory, 55(6), 2816–2826. 10.1109/tit.2009.2018325
  2. Beigi, S. (2013). Sandwiched Rényi divergence satisfies data processing inequality. Journal of Mathematical Physics, 54(12). 10.1063/1.4838855