Abstract¶ The conditions for a functional of two vectors to be an inner product.
Keywords: Vectors Vector Spaces Inner Products. ¶ A vector space , V V V , with an inner product is called an inner product space .
An inner product, ( ⋅ , ⋅ ) (\cdot, \cdot) ( ⋅ , ⋅ ) , is a functional that takes two vectors from the vector space V V V , defined over a field F n \mathbb{F}^{n} F n , as an input and outputs a scalar, ( ⋅ , ⋅ ) : F n ⊗ F n → F 1 (\cdot, \cdot): \mathbb{F}^{n} \otimes \mathbb{F}^{n} \rightarrow \mathbb{F}^{1} ( ⋅ , ⋅ ) : F n ⊗ F n → F 1 .
Inner Product Conditions ¶ Let ψ , σ ∈ V \psi, ~\sigma ~\in~V ψ , σ ∈ V and a ∈ F 1 a \in \mathbb{F}^{1} a ∈ F 1 .
To be an inner product the functional ( ⋅ , ⋅ ) (\cdot, \cdot) ( ⋅ , ⋅ ) must obeys the following properties:
( ψ , ψ ) ≥ 0 (\psi, \psi) \geq 0 ( ψ , ψ ) ≥ 0 and ( ψ , ψ ) = 0 (\psi, \psi) = 0 ( ψ , ψ ) = 0 if and only if ψ = 0 \psi=0 ψ = 0
( ψ , ω ) = ( ω , ψ ) ∗ (\psi,\omega) = (\omega, \psi)^{*} ( ψ , ω ) = ( ω , ψ ) ∗
Conjugate symmetry
If V V V is defined over R \mathbb{R} R then ( ψ , ω ) = ( ω , ψ ) (\psi,\omega) = (\omega, \psi) ( ψ , ω ) = ( ω , ψ )
( a ψ , ω ) = a ( ψ , ω ) (a\psi, \omega) = a (\psi, \omega) ( a ψ , ω ) = a ( ψ , ω )
Linearity in the first argument
If V V V is defined over C \mathbb{C} C then ( a ψ , ω ) = a ∗ ( ψ , ω ) (a \psi,\omega) = a^*(\psi, \omega) ( a ψ , ω ) = a ∗ ( ψ , ω )
( ω + σ , ψ ) = ( ω , ψ ) + ( σ , ψ ) (\omega + \sigma, \psi) = (\omega, \psi) + (\sigma, \psi) ( ω + σ , ψ ) = ( ω , ψ ) + ( σ , ψ )
Implication ¶ Given a vector space V V V with an inner product as defined above, one finds that
( σ , ψ + ω ) = ( σ , ψ ) + ( σ , ω ) , ( ψ , a ω ) = a ∗ ( ψ , ω ) (\sigma, \psi + \omega) = (\sigma,\psi) + (\sigma, \omega), ~ ~ ~ (\psi, a\omega) = a^* (\psi, \omega) ( σ , ψ + ω ) = ( σ , ψ ) + ( σ , ω ) , ( ψ , aω ) = a ∗ ( ψ , ω ) which is called being anti-linear in the second argument. Hence, linearity in the first argument implies anti-linearity in the second argument.
( ψ , a ω ) = ( a ω , ψ ) ∗ = [ a ( ω , ψ ) ] ∗ = a ∗ ( ω , ψ ) ∗ = a ∗ ( ψ , ω ) \begin{align*}
(\psi, a\omega) &= (a \omega, \psi)^* \\
&= \big[a (\omega, \psi) \big]^* \\
&= a^* (\omega, \psi)^* \\
&= a^* (\psi, \omega)
\end{align*} ( ψ , aω ) = ( aω , ψ ) ∗ = [ a ( ω , ψ ) ] ∗ = a ∗ ( ω , ψ ) ∗ = a ∗ ( ψ , ω ) ( σ , ψ + ω ) = ( ψ + ω , σ ) ∗ = [ ( ψ , σ ) + ( ω , σ ) ] ∗ = ( ψ , σ ) ∗ + ( ω , σ ) ∗ = ( σ , ψ ) + ( σ , ω ) . \begin{align*}
(\sigma, \psi + \omega) &= (\psi + \omega, \sigma)^*\\
&= \big[(\psi, \sigma) + (\omega, \sigma) \big ]^* \\
&= (\psi, \sigma)^* + (\omega, \sigma)^* \\\
&= (\sigma, \psi) + (\sigma, \omega).
\end{align*} ( σ , ψ + ω ) = ( ψ + ω , σ ) ∗ = [ ( ψ , σ ) + ( ω , σ ) ] ∗ = ( ψ , σ ) ∗ + ( ω , σ ) ∗ = ( σ , ψ ) + ( σ , ω ) . Cauchy–Schwarz inequality ¶ The Cauchy–Schwarz inequality is an upper bound on the inner product between two vectors, in any vector space, in terms of the norms of the vectors, where the norm is defined via the inner product.
Let x , y ∈ V \bm{x}, \bm{y}~\in~V x , y ∈ V , where V V V is a inner product space defined over F \mathbb{F} F with inner product ( ⋅ , ⋅ ) → F 1 (\cdot, \cdot) \rightarrow \mathbb{F}^{1} ( ⋅ , ⋅ ) → F 1 , then
∣ ( x , y ) ∣ 2 ≤ ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ , \vert (\bm{x}, \bm{y}) \vert ^{2} \leq \vert \vert \bm{x} \vert \vert ~ \vert \vert \bm{y} \vert \vert, ∣ ( x , y ) ∣ 2 ≤ ∣∣ x ∣∣ ∣∣ y ∣∣ , where ∣ ⋅ ∣ \vert \cdot \vert ∣ ⋅ ∣ is the absolute value and
∣ ∣ x ∣ ∣ = ( x , x ) . \vert \vert \bm{x} \vert \vert = \sqrt{ (\bm{x}, \bm{x}) }. ∣∣ x ∣∣ = ( x , x ) .