Skip to article frontmatterSkip to article content
Tutorial

Norms

Abstract

The conditions for a functional on a vector space to be a norm and some examples of both vector and matrix norms.

Keywords:NormsVector SpacesVectorsMatrices

Norm Conditions

Let VV be a vector space over the field F\mathbb{F}. A functional, \vert \vert \cdot \vert \vert , on VV from it’s elements to the positive real numbers, :VR+\vert \vert \cdot \vert \vert: V \rightarrow \mathbb{R}^{+} is a norm if it satisfies the following conditions for ψ,σ  V\psi, \sigma ~\in ~V and λ  F1\lambda~\in~\mathbb{F}^{1}:

  1. ψ0\vert \vert \psi \vert \vert \geq 0 where ψ=0\vert \vert \psi \vert \vert=0 iif ψ=0\psi = 0
    • Positivity
  2. λψ=λ ψ\vert \vert \lambda \psi \vert \vert = \vert \lambda \vert ~ \vert \vert \psi \vert \vert
    • Scaling
  3. ψ+σψ+σ\vert \vert \psi + \sigma \vert \vert \leq \vert \vert \psi \vert \vert + \vert \vert \sigma \vert \vert
    • Triangle Inequality
    • From this is can be seen that:  ψσ ψσ\vert ~ \vert \vert \psi \vert \vert - \vert \vert \sigma \vert \vert ~\vert \leq \vert \vert \psi - \sigma \vert \vert

Norms can be thought of as functionals that measure the size of an elements of a vector space. A vector space with a norm is called a normed vector space.

Vector Norm Examples

l_p-norm
Sup-norm

Let ψ  V\psi~\in~V be a vector such that ψ  Fn\psi~\in~\mathbb{F}^{n} with elements (ψ1,ψ2,,ψn)(\psi_1, \psi_2, \ldots, \psi_n). The lpl_{p}-norm is given by

ψp=(ψ1p+ψ2p++ψnp)1/p\vert \vert \psi \vert \vert_{p} = \big( \vert \psi_1 \vert^p + \vert \psi_2 \vert^p + \ldots + \vert \psi_n \vert^p)^{1/p}

With p=1p=1 and p=2p=2 being the 1-norm and Euclidean (l2l_2) Norm:

ψ1=(ψ1+ψ2++ψn)ψ2=(ψ12+ψ22++ψn2)1/2\begin{align*} \vert \vert \psi \vert \vert_{1} &= \big( \vert \psi_1 \vert + \vert \psi_2 \vert + \ldots + \vert \psi_n \vert) \\ \vert \vert \psi \vert \vert_{2} &= \big( \vert \psi_1 \vert^2 + \vert \psi_2 \vert^2 + \ldots + \vert \psi_n \vert^2)^{1/2} \end{align*}

Matrix Norms

In addition to satisfying the above requirements, to be considered a norm on a vector space, MM, which has matrices as elements, the functional Ω:MR+\Omega: M \rightarrow \mathbb{R}^{+} must satisfy the following condition for all A,B  MA,B~\in~M:

  1. ABA B\vert \vert AB \vert \vert \leq \vert \vert A \vert \vert ~ \vert \vert B \vert \vert

Matrix Norm Examples

The following norms depend only on the singular values of the matrices they act upon. This means that the following conditions are true:

A=AV=UA\begin{align*} \vert \vert A \vert \vert = \vert \vert A V \vert \vert = \vert \vert U A \vert \vert \end{align*}

where VV and UU are unitary matrices.

Hence, these norms are all also unitarily invariant, meaning A=UAU\vert \vert A \vert \vert = \vert \vert UAU^{\dagger} \vert \vert.

Proof

The singular valued decomposition of a matrix A  Mnm(C)A~\in~\mathbb{M}_{nm}(\mathbb{C}) is

A=UDV,A = U D V^{\dagger},

where UU is an m×mm \times m complex unitary matrix, VV is a n×nn \times n complex unitary matrix, and DD is an m×nm \times n diagonal matrix with non-negative real numbers on the diagonal. These non-negative real numbers are the singular values of AA.

Consider a norm :Mnm(C)R+\vert \vert \cdot \vert \vert: \mathbb{M}_{nm}(\mathbb{C}) \rightarrow \mathbb{R}^+ that depends only on the singular values of the matrix it is applied to and let WW be a unitary operator. Consider now

AW=UDVW,=UDV~,\begin{align*} AW &= UDV^\dagger W, \\ &= UD\tilde{V}^\dagger, \end{align*}

where V~=VW\tilde{V}^\dagger = V^\dagger W is just a different unitary matrix. Hence, it can be seen that the singular values of AA and AWAW are the same - the non-negative real numbers on the diagonal of DD - and therefore that AW=A \vert \vert A W \vert \vert = \vert \vert A \vert \vert.

The same argument can be made to prove that WA=A \vert \vert W A \vert \vert = \vert \vert A \vert \vert

A matrix AMnn(C)A \in \mathbb{M}_{nn}(\mathbb{C}) has an eigen-decomposition if

A=QPQ\begin{align*} A = Q P Q^\dagger \end{align*}

where QQ has the eigenvectors of AA as it’s columns and PP is a diagonal matrix with the eigenvalues of AA on it’s diagonals.

All matrices have a singular valued decompostion, but not all matrices have an eigen-decomposition. Moreover, unlike the singular values, the eigenvalues can be negative and complex.

For Hermitian matrices, the singular values are the absolute values of the eigenvalues.

Note, for Hermitian matrices, the singular values are the absolute values of the eigenvalues.

Trace Norm
Frobenius Norm
l_2 norm
Ky Fan Norm
Schatten Norms

Let A  MA~\in~M be a matrix such that A  Mmn(F)A~\in~\mathbb{M}_{mn}(\mathbb{F}). The trace norm is given by

Atr=iμi(A),\vert \vert A \vert \vert_{\textrm{tr}} = \sum_{i} \mu_{i}(A),

where μi(A)\mu_{i}(A) are the singular value of AA. Hence, the Trace norm of AA is the sum of singular values of A.

It is also given by

Atr=tr(AA).\vert \vert A \vert \vert_{\textrm{tr}} = \textrm{tr} \big( \sqrt{A^{\dagger}A} \big).

The following norms do not necessarily depend on the singular values and hence the above conditions might not hold.

Operator Norm
L_pq Norms

This is an induced norm.

Let A  MA~\in~M be a matrix such that A  Fm×nA~\in~\mathbb{F}^{m \times n}. If AA is a linear map such that A:VWA: V \rightarrow W, where VV is a vector space over Fm\mathbb{F}^{m} and WW is a vector space over Fn\mathbb{F}^{n} then the operator norm is given by

Aop=inf{c0:AψWcψV  ψ  V},\vert \vert A \vert \vert_{op} = \inf \{c \geq 0: \vert \vert A \psi \vert \vert_{W} \leq c \vert \vert \psi \vert \vert_{V}~\forall~\psi~\in~V \},

where W\vert \vert \cdot \vert \vert_{W} and V\vert \vert \cdot \vert \vert_{V} are vector norms on VV and WW respectively.

The operator norm can be colloquially thought of as the maximum amount a map AA can lengthen a vector in VV.

Cross Norms

Consider a tensor product space V=XYV = \mathcal{X} \otimes \mathcal{Y}.

A norm, \vert \vert \cdot \vert \vert , is a cross norm if

V=XY=X Y.\vert \vert V \vert \vert = \vert \vert \mathcal{X} \otimes \mathcal{Y} \vert \vert = \vert \vert \mathcal{X} \vert \vert ~ \vert \vert \mathcal{Y} \vert \vert.

All norms that depend only on the singular values are cross norms.

Proof

Note: this is a somewhat hand-wavey proof.

Let the singular valued decomposition of a matrix A  Mnm(C)A~\in~\mathbb{M}_{nm}(\mathbb{C}) be

A=UDAV,A = U D_A V^{\dagger},

and the singular valued decomposition of a matrix B  Mnm(C)B~\in~\mathbb{M}_{nm}(\mathbb{C}) be

B=WDBT.B = W D_B T^{\dagger}.

Hence, the singular values of ABA \otimes B are the product all of the singular values of AA with the singular values of BB.

The singular valued decomposition of a matrix ABA \otimes B can then be seen to be

AB=(UW)(DADB)(VT).\begin{align*} A \otimes B = (U \otimes W)(D_A \otimes D_B)(V \otimes T)^\dagger. \end{align*}

By observing this fact, it can be seen that any norms that depends only the singular values of a matrix can be factorised into a product of the norm applied to AA and BB separately.

Useful Norm Inequalities

Hölder's Inequality
Rastegin
Cauchy–Schwarz Inequality

Let H\mathcal{H} be a Hilbert space, and let A,BH A, B \in \mathcal{H} be operators on the space.

The following inequality:

ABrAp Bq,\vert \vert AB \vert \vert_r \leq \vert \vert A \vert \vert_p ~ \vert \vert B \vert \vert_q,

where 1p+1q=1r\frac{1}{p} + \frac{1}{q} = \frac{1}{r}.

Note, Hölder’s Inequality is more general than this, and applies to vector spaces other than Hilbert spaces and objects other than operators. See here for some details

References
  1. Rastegin, A. E. (2012). Relations for certain symmetric norms and anti-norms before and after partial trace. 10.48550/ARXIV.1202.3853