Eigenvectors and Eigenvalues
Abstract¶ A brief overview of eigenvectors and eigenvalues.
Keywords: Eigenvectors eigenvalues vector spaces linear maps. ¶ Definition ¶ Let V V V be a vector space defined over a field F \mathbb{F} F and L : V → V L: V \rightarrow V L : V → V be a linear map. A vector v ∈ V \bm{v}~\in~V v ∈ V , where v ≠ 0 \bm{v} \neq 0 v = 0 , is called an eigenvector of the map L L L if
L ( v ) = λ v , L(\bm{v}) = \lambda \bm{v}, L ( v ) = λ v , where λ ∈ F 1 \lambda~\in~\mathbb{F}^{1} λ ∈ F 1 is the eigenvalue of the eigenvector v \bm{v} v .
The set of all eigenvalues of a linear map L L L is called the spectrum of L L L , denoted spec L \textrm{spec}L spec L .
An vector space is said to be degenerate if different eigenvectors have the same eigenvalue.
Basis of Eigenvectors ¶ Let L : V → V L: V \rightarrow V L : V → V be linear map, where V V V is a vector space of dimension n n n . The space V V V can have a basis that consists of vectors of eigenvectors of L L L , say { v 1 , v 2 , … , v n } \{\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_n \} { v 1 , v 2 , … , v n } with eigenvalues { λ 1 , λ 2 , … , λ n } \{\lambda_1, \lambda_2, \ldots, \lambda_n \} { λ 1 , λ 2 , … , λ n } - such that L ( v i ) = λ i v i L(\bm{v}_{i}) = \lambda_i \bm{v}_i L ( v i ) = λ i v i .
If so, then the matrix associated to the linear map L L L , M L M_{L} M L , can be written with respect to this basis as
M L = ( λ 1 0 … 0 0 λ 2 … 0 ⋮ ⋮ ⋮ ⋮ 0 0 … λ n ) . M_{L} = \begin{pmatrix}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda_n \\
\end{pmatrix}. M L = ⎝ ⎛ λ 1 0 ⋮ 0 0 λ 2 ⋮ 0 … … ⋮ … 0 0 ⋮ λ n ⎠ ⎞ . This also works the other way around. If there exists a basis, { v 1 , v 2 , … , v n } \{\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_n \} { v 1 , v 2 , … , v n } , such that M L M_{L} M L can be written diagonally (as above) then vectors in the basis are eigenvectors of L L L and the associated value on the diagonal is the eigenvalues.
Conditions on a Basis of Eigenvectors
Let L : V → V L:V \rightarrow V L : V → V be a linear operator, where V V V is a vector space of dim V = n \textrm{dim}V=n dim V = n .
The vector space V V V has a basis of eigenvectors if and only if V V V can be decomposed into a direct sum of eigenspaces
V = V λ 1 ⊕ V λ 2 ⊕ … ⊕ V λ n . V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \ldots \oplus V_{\lambda_n}. V = V λ 1 ⊕ V λ 2 ⊕ … ⊕ V λ n . Let L : V → V L:V \rightarrow V L : V → V be a linear operator, where V V V is a vector space of dim V = n \textrm{dim}V=n dim V = n .
If L L L has n n n different eigenvalues, then it has a basis of eigenvectors.
Let L : V → V L:V \rightarrow V L : V → V be a linear operator, where V V V is a vector space of dim V = n \textrm{dim}V=n dim V = n , and { v 1 , v 2 , … , v n } \{\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_n \} { v 1 , v 2 , … , v n } a set of eigenvectors with different eigenvalues.
The set { v 1 , v 2 , … , v n } \{\bm{v}_1, \bm{v}_2, \ldots, \bm{v}_n \} { v 1 , v 2 , … , v n } is linear independent .
Calculating Eigenvectors and Eigenvalues ¶ Let L : V → V L:V \rightarrow V L : V → V be a linear operator, where V V V is a vector space of dim V < ∞ \textrm{dim}V<\infty dim V < ∞ defined over F \mathbb{F} F .
λ ∈ F 1 \lambda~\in~\mathbb{F}^{1} λ ∈ F 1 is an eigenvector of L L L if and only if
Det ( M L − λ I ) = 0 , \textrm{Det}(M_{L} - \lambda \mathbb{I}) = 0, Det ( M L − λ I ) = 0 , where Det \textrm{Det} Det is the determinant and M L M_L M L is the matrix associated to L L L (note this is independent of the choice of basis for M L M_L M L ).
One can define the characteristic polynomial of L L L as P ( λ ) = Det ( M L − λ I ) P(\lambda)=\textrm{Det}(M_{L} - \lambda \mathbb{I}) P ( λ ) = Det ( M L − λ I ) , the roots of the characteristic polynomial then give the eigenvalues of L L L .
The corresponding eigenspace to an eigenvalues λ \lambda λ is then given by
V λ = Ker ( M L − λ I ) , V_{\lambda} = \textrm{Ker}(M_{L} - \lambda \mathbb{I}), V λ = Ker ( M L − λ I ) , where Ker \textrm{Ker} Ker is the kernel .
Real Matrices ¶ Let M ∈ M ( R ) M~\in~\mathbb{M}(\mathbb{R}) M ∈ M ( R ) be symetric, M t = M M^{t}=M M t = M , then there exists a matrix B ∈ M ( R ) B~\in~\mathbb{M}(\mathbb{R}) B ∈ M ( R ) such that
B t M B = ( λ 1 0 … 0 0 λ 2 … 0 ⋮ ⋮ ⋮ ⋮ 0 0 … λ n ) , B^{t}MB = \begin{pmatrix}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \lambda_n \\
\end{pmatrix}, B t MB = ⎝ ⎛ λ 1 0 ⋮ 0 0 λ 2 ⋮ 0 … … ⋮ … 0 0 ⋮ λ n ⎠ ⎞ , where { λ 1 , λ 2 , … , λ n } \{ \lambda_1, \lambda_2, \ldots, \lambda_n \} { λ 1 , λ 2 , … , λ n } are eigenvalues of M M M and B B B has an orthonormal basis of eigenvectors as its columns such that B t B = I B^{t}B=\mathbb{I} B t B = I .
Further Properties ¶
Let L : V → V L:V \rightarrow V L : V → V be a linear operator, where V V V is a vector space of dim V = n \textrm{dim}V=n dim V = n defined over F 1 \mathbb{F}^{1} F 1 , with eigenvalues { λ 1 , λ 2 , … , λ n } \{\lambda_1, \lambda_2, \ldots, \lambda_n \} { λ 1 , λ 2 , … , λ n } that are not necessarily distinct.
The determinant of L L L is given by
Det L = ∏ i n λ i . \textrm{Det}L = \prod^{n}_{i} \lambda_i. Det L = i ∏ n λ i . Let L : V → V L:V \rightarrow V L : V → V be a linear operator, where V V V is a vector space of dim V = n \textrm{dim}V=n dim V = n defined over F 1 \mathbb{F}^{1} F 1 , with eigenvalues { λ 1 , λ 2 , … , λ n } \{\lambda_1, \lambda_2, \ldots, \lambda_n \} { λ 1 , λ 2 , … , λ n } that are not necessarily distinct.
The trace of L L L is given by
tr L = ∑ i n λ i . \textrm{tr}L = \sum^{n}_{i} \lambda_i. tr L = i ∑ n λ i . Further Resource ¶