Skip to article frontmatterSkip to article content
Tutorial

Basis

Abstract

The conditions for a set of vectors to be a basis and some properties of vector basis.

Keywords:VectorsVector Spacesbasis

Basis Conditions

Let VV be a vector space and a1, a2,, an  V  na_{1}, ~a_{2}, \ldots, ~a_{n}~\in~V~\forall~n.

The set of vectors {a1, a2,, an}\{ a_{1}, ~a_{2}, \ldots, ~a_{n} \} are a basis of VV if

  1. Span({a1, a2, an})=V\textrm{Span}(\{ a_{1}, ~a_{2}, \ldots ~a_{n} \}) = V
    • Any vectors in VV can written as a linear combination of the vectors in {a1, a2, an}\{ a_{1}, ~a_{2}, \ldots ~a_{n} \} 💭.
  2. The vectors {a1, a2, an}\{ a_{1}, ~a_{2}, \ldots ~a_{n} \} are linear independent.

Use of Basis

For any ψ  V\psi~\in~V, if {a1, a2,, an}\{ a_{1}, ~a_{2}, \ldots, ~a_{n} \} forms a basis, there exists a unique set of scalars λ1,λ2,,λn  Fn\lambda_{1}, \lambda_2, \ldots, \lambda_{n}~\in~\mathbb{F}^{n} such that

ψ=λ1a1+λ2a2++λnan.\psi = \lambda_{1} a_{1} + \lambda_2 a_{2} + \ldots + \lambda_{n} a_{n}.

Hence, given a basis one can write any vector in the space as a sum over those vectors in the basis.

Basis Properties

Special Basis

Standard Basis
Orthonormal Basis

let VV be a vector space defined over Fn\mathbb{F}^{n}.

The standard basis of a vector space VV is given by

e1=[100],  e2=[010],  en=[001].\begin{align*} e_{1} &= \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, ~ ~ e_2 &= \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, ~~ e_n &= \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}. \end{align*}