let x ∈ F n , y ∈ F n \bm{x} \in \mathbb{F}^{n}, ~\bm{y} \in \mathbb{F}^{n} x ∈ F n , y ∈ F n
x + y = [ x 1 + y 1 x 2 + y 2 ⋮ x n + y n ] \bm{x} + \bm{y} = \begin{bmatrix}
x_{1} + y_{1} \\
x_{2} + y_{2} \\
\vdots \\
x_{n} + y_{n}
\end{bmatrix} x + y = ⎣ ⎡ x 1 + y 1 x 2 + y 2 ⋮ x n + y n ⎦ ⎤ let x ∈ F n , y ∈ F n , λ ∈ F 1 \bm{x} \in \mathbb{F}^{n}, ~ \bm{y} \in \mathbb{F}^{n},~ \lambda \in \mathbb{F}^{1} x ∈ F n , y ∈ F n , λ ∈ F 1
λ x = [ λ x 1 λ x 2 ⋮ λ x n ] , \lambda \bm{x} = \begin{bmatrix}
\lambda x_{1} \\
\lambda x_{2} \\
\vdots \\
\lambda x_{n}
\end{bmatrix}, λ x = ⎣ ⎡ λ x 1 λ x 2 ⋮ λ x n ⎦ ⎤ , Hence, λ ( x + y ) = λ x + λ y \lambda (\bm{x} + \bm{y}) = \lambda \bm{x} + \lambda \bm{y} λ ( x + y ) = λ x + λ y
let x ∈ F n , y ∈ F n , v ∈ F n , λ ∈ F 1 \bm{x} \in \mathbb{F}^{n}, ~\bm{y} \in \mathbb{F}^{n}, ~\bm{v} \in \mathbb{F}^{n},~ \lambda \in \mathbb{F}^{1} x ∈ F n , y ∈ F n , v ∈ F n , λ ∈ F 1
x ⋅ y = x 1 y 1 + x 2 y 2 … x n y n \bm{x} \cdot \bm{y} = x_{1}y_{1} + x_{2}y_{2} \ldots x_{n}y_{n} x ⋅ y = x 1 y 1 + x 2 y 2 … x n y n Properties:
x ⋅ y = y ⋅ x \bm{x} \cdot \bm{y} = \bm{y} \cdot \bm{x} x ⋅ y = y ⋅ x x ⋅ ( y + v ) = x ⋅ y + x ⋅ v \bm{x} \cdot (\bm{y} + \bm{v}) = \bm{x} \cdot \bm{y} + \bm{x} \cdot \bm{v} x ⋅ ( y + v ) = x ⋅ y + x ⋅ v ( x + y ) ⋅ v = x ⋅ v + y ⋅ v (\bm{x} + \bm{y}) \cdot \bm{v} = \bm{x} \cdot \bm{v} + \bm{y} \cdot \bm{v} ( x + y ) ⋅ v = x ⋅ v + y ⋅ v ( λ x ) ⋅ y = λ ( x ⋅ y ) = x ⋅ ( λ y ) (\lambda \bm{x}) \cdot \bm{y} = \lambda(\bm{x} \cdot \bm{y}) = \bm{x} \cdot (\lambda \bm{y}) ( λ x ) ⋅ y = λ ( x ⋅ y ) = x ⋅ ( λ y ) ( A x ) ⋅ y = x ⋅ ( A t y ) (A\bm{x}) \cdot \bm{y} = \bm{x} \cdot (A^t\bm{y}) ( A x ) ⋅ y = x ⋅ ( A t y ) , where ( ⋅ ) t (\cdot)^t ( ⋅ ) t is the transpose and A A A is an n × n n \times n n × n matrix.let x ∈ F n , y ∈ F n , v ∈ F n , λ ∈ F 1 \bm{x} \in \mathbb{F}^{n}, ~\bm{y} \in \mathbb{F}^{n}, \bm{v} \in \mathbb{F}^{n}, ~ \lambda \in \mathbb{F}^{1} x ∈ F n , y ∈ F n , v ∈ F n , λ ∈ F 1
x × y = ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ sin ( θ ) m ^ \bm{x} \times \bm{y} = \vert \vert \bm{x} \vert \vert ~ \vert \vert \bm{y} \vert \vert \textrm{sin}(\theta) \bm{\hat{m}} x × y = ∣∣ x ∣∣ ∣∣ y ∣∣ sin ( θ ) m ^ where θ \theta θ is the angle between x \bm{x} x and y \bm{y} y , and m ^ \bm{\hat{m}} m ^ is a unit vector perpendicular to both x \bm{x} x and y \bm{y} y .
Properties:
x × x = 0 \bm{x} \times \bm{x} = 0 x × x = 0 x × y = − y × x \bm{x} \times \bm{y} = - \bm{y} \times \bm{x} x × y = − y × x ( λ x ) × y = x × ( λ y ) = λ ( x × y ) (\lambda \bm{x}) \times \bm{y} = \bm{x} \times (\lambda \bm{y}) = \lambda (\bm{x} \times \bm{y}) ( λ x ) × y = x × ( λ y ) = λ ( x × y ) x × ( y × v ) + y × ( v × x ) + v × ( x × y ) = 0 \bm{x} \times (\bm{y} \times \bm{v}) + \bm{y} \times (\bm{v} \times \bm{x}) + \bm{v} \times (\bm{x} \times \bm{y}) = 0 x × ( y × v ) + y × ( v × x ) + v × ( x × y ) = 0