Skip to article frontmatterSkip to article content
Tutorial

Vectors

Abstract

A very brief overview of vectors, operations of vectors and other key properties.

Keywords:Vectorsdot productcross product.

Vectors Definition

A vector is a collection of elements from a given field F\mathbb{F}. This field could be the real numbers, R\mathbb{R}, or the complex number, C\mathbb{C}, for example. Vectors are often written in columns such as

x=[x1x2xn],\begin{align*} \bm{x} &= \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}, \end{align*}

where each component xix_{i} is a element in F\mathbb{F}. This vector is an nn dimensional vector over the field F\mathbb{F}, which we can write as xFn\bm{x} \in \mathbb{F}^{n}, meaning x\bm{x} is a vector of nn components where each components is from the field F\mathbb{F}.

Vector Operations:

Vector Addition
Scalar Multiplication
Dot Product
Cross Product

let xFn, yFn\bm{x} \in \mathbb{F}^{n}, ~\bm{y} \in \mathbb{F}^{n}

x+y=[x1+y1x2+y2xn+yn]\bm{x} + \bm{y} = \begin{bmatrix} x_{1} + y_{1} \\ x_{2} + y_{2} \\ \vdots \\ x_{n} + y_{n} \end{bmatrix}
Vector Norm
Orthogonality
Span

Let xFn, λF1\bm{x} \in \mathbb{F}^{n}, ~ \lambda \in \mathbb{F}^{1}

x=(inxi2)1/2\vert \vert \bm{x} \vert \vert = \bigg( \sum^{n}_{i} x_{i}^{2} \bigg)^{1/2}

Properties:

  • x0, where x=0 iif. x=0\vert \vert \bm{x} \vert \vert \geq 0, ~\textrm{where}~\vert \vert \bm{x} \vert \vert = 0 ~\textrm{iif.}~\bm{x}=0
  • λx=λ x\vert \vert \lambda \bm{x} \vert \vert = \vert \lambda \vert ~ \vert \vert \bm{x} \vert \vert
  • x+yx+y \vert \vert \bm{x} + \bm{y} \vert \vert \leq \vert \vert \bm{x} \vert \vert + \vert \vert \bm{y} \vert \vert

This is just one example of a vector norm. See more on the norms page

Vector Properties

Pythagoras' Theorem
Cauchy-Schwarz Inequality

let xFn, yFn\bm{x} \in \mathbb{F}^{n}, ~\bm{y} \in \mathbb{F}^{n}

x+y2=x2+y2\vert \vert \bm{x} + \bm{y} \vert \vert^{2} = \vert \vert \bm{x} \vert \vert^{2} + \vert \vert \bm{y} \vert \vert^{2}