Skip to article frontmatterSkip to article content
Tutorial

Matrices

Abstract

A brief overview of matrices, operations of matrices and other key properties.

Keywords:MatricesVector Spaces

Matrix Definition

Let n,mn,m be some integers. An n×mn \times m matrix over a field F\mathbb{F} is a rectangular array of numbers aij  Fa_{ij}~\in~\mathbb{F} with nn rows and mm columns, such that

A=(a11a12a1ma21a22a2man1an2anm)A = \begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1m} \\ a_{21} & a_{22} & \ldots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nm} \\ \end{pmatrix}

The values aija_{ij} are called the matrix elements of AA.

If n=mn=m, the matrix is called a square matrix.

The iith row of AA is given by

(ai1, ai2,  ,aim),(a_{i1},~ a_{i2},~ \ldots ~, a_{im}),

and the jjth column is given by

(a1ma2manm),\begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \\ \end{pmatrix},

which can be thought of as row and column vectors respectively. The set of n×mn \times m matrices over the field F\mathbb{F} is given by Mnm(F)\mathbb{M}_{nm}(\mathbb{F}).

Matrix Operations:

Scalar Multiplication
Vector Multiplication
Matrix Addition

Let A  Mnm(F)A~\in~\mathbb{M}_{nm}(\mathbb{F}) and λ  F1\lambda~\in~\mathbb{F}^{1}

λA=(λa11λa12λa1mλa21λa22λa2mλan1λan2λanm)\lambda A = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \ldots & \lambda a_{1m} \\ \lambda a_{21} & \lambda a_{22} & \ldots & \lambda a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda a_{n1} & \lambda a_{n2} & \ldots & \lambda a_{nm} \\ \end{pmatrix}
Transpose
Conjugate transpose
Inverse
Matrix Multiplication

Let A,B  Mnm(F)A,B~\in~\mathbb{M}_{nm}(\mathbb{F}), C  Mml(F)C~\in~\mathbb{M}_{ml}(\mathbb{F}), x  Fm, y  Fn\bm{x}~\in~\mathbb{F}^{m}, ~\bm{y}~\in~\mathbb{F}^{n}.

The transpose of AA, given by At  Mmn(F)A^{t}~\in~\mathbb{M}_{mn}(\mathbb{F}), is the matrix obtained by swapping the roles and columns of the matrix AA. If the matrix element of AA in the iith row and jjth column is given by aija_{ij}, the matrix elements of AtA^{t} in the iith row and jjth column is given by ajia_{ji}.

Properties:

  • (AC)t=CtAt(AC)^{t} = C^{t}A^{t}
  • (A+B)t=At+Bt=Bt+At(A+B)^{t} = A^{t} + B^{t} = B^{t} + A^{t}.
  • yAx=(Aty)x\bm{y} \cdot A \bm{x} = (A^{t}\bm{y}) \cdot \bm{x}

Matrix Properties

Triangular
Symmetric
Anti-symmetric
Diagonal
Positive

Let A  MnmA~\in~\mathbb{M}_{nm} with elements aija_{ij} (iith row and jjth column)

AA is upper triangular if aij=0a_{ij}=0 if i>ji>j. For example

A=(123024003)A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 3 \\ \end{pmatrix}

AA is lower triangular if aij=0a_{ij}=0 if i<ji<j. For example

A=(100240321)A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 2 & 1 \\ \end{pmatrix}