Skip to article frontmatterSkip to article content

Quantum Channels

Abstract

The details of how the dynamics of quantum states are modelled.

Keywords:DynamicsChannelsEvolutionPositiveTrace Preserving.

Definition

A quantum channel is a linear, completely positive, trace-preserving map (from the set of density operators to itself).

A channel mapping from states in an input Hilbert space Hin\mathcal{H}_{in} to an output Hilbert space Hout\mathcal{H}_{out} is denoted as

E:HinHout\mathcal{E}: \mathcal{H}_{in} \rightarrow \mathcal{H}_{out}

A quantum channel is a more general notion of evolution then that captured via the Schrödinger equation and unitary dynamics as it models interactions with the environment. Unitary dynamics are subset of quantum channels.

Linear

A map, E\mathcal{E}, is linear if

E(ρ+σ)=E(ρ)+E(σ)\mathcal{E}(\rho + \sigma) = \mathcal{E}(\rho) + \mathcal{E}(\sigma)

Positive

A linear map, E\mathcal{E}, is positive if it maps positive elements to positive elements,

ρ0    E(ρ)0.\rho \geq 0 \implies \mathcal{E}(\rho) \geq 0.

Completely Positive

A linear map, E\mathcal{E}, is completely positive if it remains a positive map when embedded into a high dimensional space,

ρ0    (EI)(ρ)0,\rho \geq 0 \implies (\mathcal{E} \otimes \mathcal{I}) (\rho) \geq 0,

where I\mathcal{I} is the identity channel on an arbitrarily large ancilla.

This additional restriction is needed to ensure that acting that map on part of a larger, potentially entangled state, still outputs a physical quantum state.

This ensure that all operators output from a channel remain positive semi-definite.

Trace-preserving

A map, E\mathcal{E}, is trace preserving if

tr[E(ρ)]=1,\textrm{tr} \big[ \mathcal{E}(\rho) \big] = 1,

for all ρHin\rho \in \mathcal{H}_{in}, where ρ\rho is a valid density operator, tr[ρ]=1,ρ0 \textrm{tr} \big[ \rho \big] = 1, \rho \geq 0.

This ensure that all operators output from a channel still have trace one.

Channel Descriptions

There are multiple different ways to represent a quantum channel. Each different channel description can be used whenever useful.

Stinespring Dilation
Kraus Decomposition
Choi-Jamiolkowski isomorphism

Let E:HSHS\mathcal{E}: \mathcal{H}_{S} \rightarrow \mathcal{H}_{S'} be a quantum channel and ρ  HS\rho~\in~\mathcal{H}_{S}.

There exists a state, τE  HE\tau_{E}~\in~\mathcal{H}_{E}, and isometry, USEU_{SE}, such that

E(ρ)=trE[USE(ρSτE)USE],\mathcal{E}(\rho) = \textrm{tr}_{E} \big[ U_{SE}(\rho_{S} \otimes \tau_{E}) U_{SE}^{\dagger} \big],

where the subscript SS and EE mean system and environment respectively.

The Stinespring dilation says that all channels can be consider unitary with respect to a higher dimensional space. That is, all channels are the interaction of ρ\rho and some environment state, τ\tau under a global unitary.

Properties

  • dim τEd2\textrm{dim} ~ \tau_{E} \leq d^{2} where dim ρ=d\textrm{dim} ~ \rho = d

  • Tracing out the system instead of the enviroment gives the complementary, Ec\mathcal{E}^{c}, which can be thought as the channel from the perspective of the environment,

Ec(ρ)=trS[USE(ρSτE)USE].\mathcal{E}^{c}(\rho) = \textrm{tr}_{S} \big[ U_{SE}(\rho_{S} \otimes \tau_{E}) U_{SE}^{\dagger} \big].

Useful Channels

Dephasing Channel
Depolarising Channel

Qubits

Let ρH2 \rho \in \mathcal{H}^2. The dephasing channel acting on ρ \rho is given by

Dpph(ρ)=pρ+(1p)nnnρnn.\mathcal{D}^{\textrm{ph}}_p(\rho) = p \rho + (1-p) \sum_{n} \ket{n}\bra{n} \rho \ket{n}\bra{n}.

With respect to the standard basis this becomes

Dpph(ρ)=pρ+(1p)(00ρ00+11ρ11)\mathcal{D}^{\textrm{ph}}_p(\rho) = p \rho + (1-p) \bigg( \ket{0}\bra{0} \rho \ket{0}\bra{0} + \ket{1}\bra{1} \rho \ket{1}\bra{1} \bigg)
  1. The Kraus operators are

K0=1pI,  K1=p00,  K2=p11.\begin{align*} K_0 &= \sqrt{ 1 - p} \mathbb{I}, ~ ~ K_1 = \sqrt{ p } \ket{0}\bra{0}, ~ ~ K_2 = \sqrt{ p } \ket{1}\bra{1}. \end{align*}
  1. The Choi-state is

Jph=12(1+p)Φ00+Φ00++12(1p)Φ01+Φ01+,\mathcal{J}^{\textrm{ph}} = \frac{1}{2}(1+p) \ket{\Phi^+_{00}} \bra{\Phi^+_{00}} + \frac{1}{2}(1-p) \ket{\Phi^+_{01}} \bra{\Phi^+_{01}},

where

Φ00+=00+112,Φ01+=00112.\begin{align*} \ket{\Phi_{00}^{+}} &= \frac{\ket{0}\ket{0}+\ket{1} \ket{1}}{\sqrt{2}}, \\ \ket{\Phi_{01}^{+}} &= \frac{\ket{0}\ket{0}-\ket{1} \ket{1}}{\sqrt{2}}. \end{align*}

d-dimensional

The d-dimensional dephasing channel has Choi-state:

Jph=αΦ00+Φ00++(1α)d1c=1d1Φ0c+Φ0c+,\mathcal{J}^{\textrm{ph}} = \alpha \vert \Phi_{00}^{+} \rangle \langle \Phi_{00}^{+} \vert + \frac{(1-\alpha)}{d-1} \sum_{c=1}^{d-1} \vert \Phi_{0c}^{+} \rangle \langle \Phi_{0c}^{+} \vert,

where α=(p+1)/d\alpha=(p+1)/d and Φab+=(IWab)Φ00+\ket{\Phi_{ab}^+} = (\mathbb{I} \otimes W_{ab}) \ket{\Phi_{00}^+} and WabW_{ab} are the Heisenberg-Weyl operators.

Proof

Using the definition of the Choi-state, it can be seen that the Choi-state of a dephasing channel, Dpph()\mathcal{D}^{\rm ph}_{p}(\cdot), is given by

Jph(Dpph()I)Φ00+Φ00+=pΦ00+Φ00++(1p)dn=0d1nnnn=1dn=0d1nnnn+pdnmnnmm.\begin{align*} \mathcal{J}^{\textrm{ph}} &\coloneqq (\mathcal{D}^{\rm ph}_{p}(\cdot) \otimes \mathcal{I}) \vert \Phi_{00}^{+} \rangle \langle \Phi_{00}^{+} \vert \\ &= p \vert \Phi_{00}^{+} \rangle \langle \Phi_{00}^{+} \vert + \frac{(1-p)}{d} \sum_{n=0}^{d-1} \ket{nn}\bra{nn} \\ &= \frac{1}{d} \sum_{n=0}^{d-1} \ket{nn}\bra{nn} + \frac{p}{d} \sum_{n \neq m} \ket{nn}\bra{mm}. \end{align*}

By comparison of matrix elements, one can see that this can be rewritten as

Jph=αΦ00+Φ00++(1α)d1c=1d1Φ0c+Φ0c+,\begin{align*} \mathcal{J}^{\textrm{ph}} = \alpha \ket{\Phi_{00}^+}\bra{\Phi_{00}^{+}} + \frac{(1-\alpha)}{d-1} \sum_{c=1}^{d-1} \ket{\Phi_{0c}^+}\bra{\Phi_{0c}^{+}}, \end{align*}

such that α=(p+1)/d\alpha = (p+1)/d. To see this, consider

c=1d1Φ0c+Φ0c+=c=1d1(IW0,c)Φ00+Φ00+(IW0,c)=c=1d1(IAn=1d1Ωcnnn)Φ00+Φ00+(Im=0d1Ωcmmm)=c=1d1n,m=0d1Ωc(nm)(Inn)Φ00+Φ00+(Imm)=d1c=1d1n,m=0d1i,j=0d1Ωc(nm)(Inn)iijj(Imm)=d1n,m=0d1[c=1d1Ωc(nm)]nnmm.\begin{align*} &\sum_{c=1}^{d-1} \ket{\Phi_{0c}^{+}}\bra{\Phi_{0c}^{+}} \\ &= \sum_{c=1}^{d-1} \big( \mathbb{I} \otimes W_{0,c} \big) \ket{\Phi_{00}^+}\bra{\Phi_{00}^{+}} \big( \mathbb{I} \otimes W^\dagger_{0,c} \big) \\ &= \sum_{c=1}^{d-1} \big( \mathbb{I}_A \otimes \sum_{n=1}^{d-1} \Omega^{cn} \ket{n}\bra{n} \big) \ket{\Phi_{00}^{+}}\bra{\Phi_{00}^{+}} \big( \mathbb{I} \otimes \sum_{m=0}^{d-1} \Omega^{-cm} \ket{m}\bra{m} \big) \\ &= \sum_{c=1}^{d-1} \sum_{n,m=0}^{d-1} \Omega^{c(n-m)} \big( \mathbb{I} \otimes \ket{n}\bra{n} \big) \ket{\Phi_{00}^{+}}\bra{\Phi_{00}^{+}} \big( \mathbb{I} \otimes \ket{m}\bra{m} \big) \\ &= d^{-1} \sum_{c=1}^{d-1} \sum_{n,m=0}^{d-1} \sum_{i,j=0}^{d-1} \Omega^{c(n-m)} \big( \mathbb{I} \otimes \ket{n}\bra{n} \big) \ket{ii}\bra{jj} \big( \mathbb{I} \otimes \ket{m}\bra{m} \big) \\ &=d^{-1} \sum_{n,m=0}^{d-1} \bigg[ \sum_{c=1}^{d-1} \Omega^{c(n-m)} \bigg] \ket{nn}\bra{mm}. \end{align*}

It can then be seen, using the sum of a geometric series, that

c=1d1Ωc(nm)={1 if nm(d1) if n=m\sum_{c=1}^{d-1} \Omega^{c(n-m)} = \begin{cases} -1 & ~\mathrm{if}~n \neq m \\ (d-1) & ~\mathrm{if}~n=m \end{cases}

Therefore,

c=1d1Φ0c+Φ0c+=d1dn=md1nnnn1dnmnnmm.\begin{split} \sum_{c=1}^{d-1} \ket{\Phi_{0c}^{+}}\bra{\Phi_{0c}^{+}} &= \frac{d-1}{d} \sum_{n=m}^{d-1} \ket{nn}\bra{nn} - \frac{1}{d} \sum_{n \neq m}\ket{nn}\bra{mm}. \end{split}

Inputting this into the above gives

Jph=αdn,m=0d1nnmm+1αd1[d1dn=md1nnnn1dnmd1nnmm]=[αd+1αd]n=md1nnnn+[αd1αd(d1)]nmd1nnmmAB=1dn=mnnnn+pdnmd1nnmm,\begin{split} \mathcal{J}^{\textrm{ph}} &= \frac{\alpha}{d} \sum_{n,m=0}^{d-1} \ket{nn}\bra{mm} + \frac{1-\alpha}{d-1} \biggl[ \frac{d-1}{d} \sum_{n=m}^{d-1} \ket{nn}\bra{nn} - \frac{1}{d} \sum_{n \neq m}^{d-1}\ket{nn}\bra{mm} \biggl] \\ &= \bigg[ \frac{\alpha}{d} + \frac{1-\alpha}{d} \bigg] \sum_{n=m}^{d-1} \ket{nn}\bra{nn} + \bigg[ \frac{\alpha}{d} - \frac{1-\alpha}{d(d-1)} \bigg] \sum_{n \neq m}^{d-1}\ket{nn}\bra{mm}_{AB} \\ &= \frac{1}{d} \sum_{n=m} \ket{nn}\bra{nn} + \frac{p}{d} \sum_{n \neq m}^{d-1}\ket{nn}\bra{mm}, \end{split}

if α=(p+1)/d\alpha=(p+1)/d, the two equations are equivalent.

References
  1. Jamiołkowski, A. (1972). Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics, 3(4), 275–278. 10.1016/0034-4877(72)90011-0
  2. Choi, M.-D. (1975). Completely positive linear maps on complex matrices. Linear Algebra and Its Applications, 10(3), 285–290. 10.1016/0024-3795(75)90075-0