Abstract¶ The details of how the dynamics of quantum states are modelled.
Keywords: Dynamics Channels Evolution Positive Trace Preserving. ¶ Definition ¶ A quantum channel is a linear, completely positive, trace-preserving map (from the set of density operators to itself).
A channel mapping from states in an input Hilbert space H i n \mathcal{H}_{in} H in to an output Hilbert space H o u t \mathcal{H}_{out} H o u t is denoted as
E : H i n → H o u t \mathcal{E}: \mathcal{H}_{in} \rightarrow \mathcal{H}_{out} E : H in → H o u t A quantum channel is a more general notion of evolution then that captured via the Schrödinger equation and unitary dynamics as it models interactions with the environment. Unitary dynamics are subset of quantum channels.
Linear ¶ A map, E \mathcal{E} E , is linear if
E ( ρ + σ ) = E ( ρ ) + E ( σ ) \mathcal{E}(\rho + \sigma) = \mathcal{E}(\rho) + \mathcal{E}(\sigma) E ( ρ + σ ) = E ( ρ ) + E ( σ ) Positive ¶ A linear map, E \mathcal{E} E , is positive if it maps positive elements to positive elements,
ρ ≥ 0 ⟹ E ( ρ ) ≥ 0. \rho \geq 0 \implies \mathcal{E}(\rho) \geq 0. ρ ≥ 0 ⟹ E ( ρ ) ≥ 0. Completely Positive ¶ A linear map, E \mathcal{E} E , is completely positive if it remains a positive map when embedded into a high dimensional space,
ρ ≥ 0 ⟹ ( E ⊗ I ) ( ρ ) ≥ 0 , \rho \geq 0 \implies (\mathcal{E} \otimes \mathcal{I}) (\rho) \geq 0, ρ ≥ 0 ⟹ ( E ⊗ I ) ( ρ ) ≥ 0 , where I \mathcal{I} I is the identity channel on an arbitrarily large ancilla.
This additional restriction is needed to ensure that acting that map on part of a larger, potentially entangled state, still outputs a physical quantum state.
This ensure that all operators output from a channel remain positive semi-definite.
Trace-preserving ¶ A map, E \mathcal{E} E , is trace preserving if
tr [ E ( ρ ) ] = 1 , \textrm{tr} \big[ \mathcal{E}(\rho) \big] = 1, tr [ E ( ρ ) ] = 1 , for all ρ ∈ H i n \rho \in \mathcal{H}_{in} ρ ∈ H in , where ρ \rho ρ is a valid density operator, tr [ ρ ] = 1 , ρ ≥ 0 \textrm{tr} \big[ \rho \big] = 1, \rho \geq 0 tr [ ρ ] = 1 , ρ ≥ 0 .
This ensure that all operators output from a channel still have trace one.
Channel Descriptions ¶ There are multiple different ways to represent a quantum channel. Each different channel description can be used whenever useful.
Let E : H S → H S ′ \mathcal{E}: \mathcal{H}_{S} \rightarrow \mathcal{H}_{S'} E : H S → H S ′ be a quantum channel and ρ ∈ H S \rho~\in~\mathcal{H}_{S} ρ ∈ H S .
There exists a state, τ E ∈ H E \tau_{E}~\in~\mathcal{H}_{E} τ E ∈ H E , and isometry, U S E U_{SE} U SE , such that
E ( ρ ) = tr E [ U S E ( ρ S ⊗ τ E ) U S E † ] , \mathcal{E}(\rho) = \textrm{tr}_{E} \big[ U_{SE}(\rho_{S} \otimes \tau_{E}) U_{SE}^{\dagger} \big], E ( ρ ) = tr E [ U SE ( ρ S ⊗ τ E ) U SE † ] , where the subscript S S S and E E E mean system and environment respectively.
The Stinespring dilation says that all channels can be consider unitary with respect to a higher dimensional space. That is, all channels are the interaction of ρ \rho ρ and some environment state, τ \tau τ under a global unitary.
Properties
dim τ E ≤ d 2 \textrm{dim} ~ \tau_{E} \leq d^{2} dim τ E ≤ d 2 where dim ρ = d \textrm{dim} ~ \rho = d dim ρ = d
Tracing out the system instead of the enviroment gives the complementary, E c \mathcal{E}^{c} E c , which can be thought as the channel from the perspective of the environment,
E c ( ρ ) = tr S [ U S E ( ρ S ⊗ τ E ) U S E † ] . \mathcal{E}^{c}(\rho) = \textrm{tr}_{S} \big[ U_{SE}(\rho_{S} \otimes \tau_{E}) U_{SE}^{\dagger} \big]. E c ( ρ ) = tr S [ U SE ( ρ S ⊗ τ E ) U SE † ] . Let E : H S → H S ′ \mathcal{E}: \mathcal{H}_{S} \rightarrow \mathcal{H}_{S'} E : H S → H S ′ be a quantum channel and ρ ∈ H S \rho~\in~\mathcal{H}_{S} ρ ∈ H S
There exists a set of M M M operators { K i } i = 1 M \{ K_{i} \}_{i=1}^{M} { K i } i = 1 M such that
E ( ρ ) = ∑ i = 1 M K i ρ K i † , \mathcal{E}(\rho) = \sum_{i=1}^{M} K_{i} \rho K_{i}^{\dagger}, E ( ρ ) = i = 1 ∑ M K i ρ K i † , where
∑ i = 1 M K i † K i = I . \sum_{i=1}^{M} K_{i}^{\dagger}K_{i} = \mathbb{I}. i = 1 ∑ M K i † K i = I . This condition ensures that the quantum channel is trace preserving.
The Kraus decomposition allows one to apply channels without having to consider the environment.
Properties
The Kraus decomposition is not unique. Although, if there are two sets of operators that both describe the same channel, those sets of operators are unitarily equivalent.
M ≤ dim H S × dim H S ′ M \leq \dim \mathcal{H}_S \times \dim \mathcal{H}_{S'} M ≤ dim H S × dim H S ′ , meaning the number of operators needed for the Kraus decomposition is upper-bounded by the product of the dimensions of the input and output spaces.
Let E : H S → H S ′ \mathcal{E}: \mathcal{H}_{S} \rightarrow \mathcal{H}_{S'} E : H S → H S ′ be a quantum channel, ρ ∈ H S ~\rho~\in~\mathcal{H}_{S} ρ ∈ H S be a state, and ∣ Φ ⟩ S S ∈ H S ⊗ H S \ket{\Phi}_{SS}~\in~\mathcal{H}_{S} \otimes \mathcal{H}_{S} ∣ Φ ⟩ SS ∈ H S ⊗ H S a full Schmit rank state with dim H S ≈ dim H S ′ \textrm{dim} ~ \mathcal{H}_{S} \approx \textrm{dim} ~ \mathcal{H}_{S'} dim H S ≈ dim H S ′ .
The Choi-Jamiolkowski isomorphism (Jamiołkowski (1972) , Choi (1975) ) is a linear mapping between quantum channels and bipartite quantum states defined by
J S ′ S E = ( N S ⊗ I S ) ( ∣ Φ ⟩ ⟨ Φ ∣ S S ) ∈ H S ′ ⊗ H S , \mathcal{J}^{\mathcal{E}}_{\rm S'S} = (\mathcal{N}_{\rm S} \otimes \mathcal{I}_{\rm S}) \big( \ket{\Phi}\bra{\Phi}_{\rm SS} \big)~\in~\mathcal{H}_{S'} \otimes \mathcal{H}_{S}, J S ′ S E = ( N S ⊗ I S ) ( ∣ Φ ⟩ ⟨ Φ ∣ SS ) ∈ H S ′ ⊗ H S , where I S \mathcal{I}_{\rm S} I S is an identity channel acting on H S \mathcal{H}_{S} H S .
Typically, the full Schmit rank state state is taken to be a maximally entangled state in a fixed orthonormal basis,
∣ Φ ⟩ A B = 1 d ∑ i = 0 d − 1 ∣ i ⟩ A ∣ i ⟩ B . \ket{\Phi}_{AB} = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} \ket{i}_{A} \ket{i}_{B}. ∣ Φ ⟩ A B = d 1 i = 0 ∑ d − 1 ∣ i ⟩ A ∣ i ⟩ B . From the Choi-state, the action of E \mathcal{E} E on a state ρ \rho ρ can be recovered as
E ( ρ ) = d tr S [ ( I S ⊗ ρ t ) J S ′ S N ] , \mathcal{E}(\rho) = d ~ \textrm{tr}_{\rm S}\left[ \left(\mathbb{I}_{\rm S} \otimes \rho^{t}\right) \mathcal{J}^{\mathcal{N}}_{\rm S'S} \right], E ( ρ ) = d tr S [ ( I S ⊗ ρ t ) J S ′ S N ] , where ( ⋅ ) t (\cdot)^{t} ( ⋅ ) t is the transpose operation in the given fixed basis of the full Schmit rank state and I S \mathbb{I}_{\rm S} I S is the identity operator on H S \mathcal{H}_{S} H S .
Useful Channels ¶
Qubits
Let ρ ∈ H 2 \rho \in \mathcal{H}^2 ρ ∈ H 2 . The dephasing channel acting on ρ \rho ρ is given by
D p ph ( ρ ) = p ρ + ( 1 − p ) ∑ n ∣ n ⟩ ⟨ n ∣ ρ ∣ n ⟩ ⟨ n ∣ . \mathcal{D}^{\textrm{ph}}_p(\rho) = p \rho + (1-p) \sum_{n} \ket{n}\bra{n} \rho \ket{n}\bra{n}. D p ph ( ρ ) = pρ + ( 1 − p ) n ∑ ∣ n ⟩ ⟨ n ∣ ρ ∣ n ⟩ ⟨ n ∣ . With respect to the standard basis this becomes
D p ph ( ρ ) = p ρ + ( 1 − p ) ( ∣ 0 ⟩ ⟨ 0 ∣ ρ ∣ 0 ⟩ ⟨ 0 ∣ + ∣ 1 ⟩ ⟨ 1 ∣ ρ ∣ 1 ⟩ ⟨ 1 ∣ ) \mathcal{D}^{\textrm{ph}}_p(\rho) = p \rho + (1-p) \bigg( \ket{0}\bra{0} \rho \ket{0}\bra{0} + \ket{1}\bra{1} \rho \ket{1}\bra{1} \bigg) D p ph ( ρ ) = pρ + ( 1 − p ) ( ∣ 0 ⟩ ⟨ 0 ∣ ρ ∣ 0 ⟩ ⟨ 0 ∣ + ∣ 1 ⟩ ⟨ 1 ∣ ρ ∣ 1 ⟩ ⟨ 1 ∣ ) The Kraus operators are
K 0 = 1 − p I , K 1 = p ∣ 0 ⟩ ⟨ 0 ∣ , K 2 = p ∣ 1 ⟩ ⟨ 1 ∣ . \begin{align*}
K_0 &= \sqrt{ 1 - p} \mathbb{I}, ~ ~ K_1 = \sqrt{ p } \ket{0}\bra{0}, ~ ~ K_2 = \sqrt{ p } \ket{1}\bra{1}.
\end{align*} K 0 = 1 − p I , K 1 = p ∣ 0 ⟩ ⟨ 0 ∣ , K 2 = p ∣ 1 ⟩ ⟨ 1 ∣ . The Choi-state is
J ph = 1 2 ( 1 + p ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + 1 2 ( 1 − p ) ∣ Φ 01 + ⟩ ⟨ Φ 01 + ∣ , \mathcal{J}^{\textrm{ph}} = \frac{1}{2}(1+p) \ket{\Phi^+_{00}} \bra{\Phi^+_{00}} + \frac{1}{2}(1-p) \ket{\Phi^+_{01}} \bra{\Phi^+_{01}}, J ph = 2 1 ( 1 + p ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + 2 1 ( 1 − p ) ∣ Φ 01 + ⟩ ⟨ Φ 01 + ∣ , where
∣ Φ 00 + ⟩ = ∣ 0 ⟩ ∣ 0 ⟩ + ∣ 1 ⟩ ∣ 1 ⟩ 2 , ∣ Φ 01 + ⟩ = ∣ 0 ⟩ ∣ 0 ⟩ − ∣ 1 ⟩ ∣ 1 ⟩ 2 . \begin{align*}
\ket{\Phi_{00}^{+}} &= \frac{\ket{0}\ket{0}+\ket{1} \ket{1}}{\sqrt{2}}, \\
\ket{\Phi_{01}^{+}} &= \frac{\ket{0}\ket{0}-\ket{1} \ket{1}}{\sqrt{2}}.
\end{align*} ∣ Φ 00 + ⟩ ∣ Φ 01 + ⟩ = 2 ∣ 0 ⟩ ∣ 0 ⟩ + ∣ 1 ⟩ ∣ 1 ⟩ , = 2 ∣ 0 ⟩ ∣ 0 ⟩ − ∣ 1 ⟩ ∣ 1 ⟩ . d-dimensional
The d-dimensional dephasing channel has Choi-state:
J ph = α ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + ( 1 − α ) d − 1 ∑ c = 1 d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ , \mathcal{J}^{\textrm{ph}} = \alpha \vert \Phi_{00}^{+} \rangle \langle \Phi_{00}^{+} \vert + \frac{(1-\alpha)}{d-1} \sum_{c=1}^{d-1} \vert \Phi_{0c}^{+} \rangle \langle \Phi_{0c}^{+} \vert, J ph = α ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + d − 1 ( 1 − α ) c = 1 ∑ d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ , where α = ( p + 1 ) / d \alpha=(p+1)/d α = ( p + 1 ) / d and ∣ Φ a b + ⟩ = ( I ⊗ W a b ) ∣ Φ 00 + ⟩ \ket{\Phi_{ab}^+} = (\mathbb{I} \otimes W_{ab}) \ket{\Phi_{00}^+} ∣ Φ ab + ⟩ = ( I ⊗ W ab ) ∣ Φ 00 + ⟩ and W a b W_{ab} W ab are the Heisenberg-Weyl operators .
Using the definition of the Choi-state, it can be seen that the Choi-state of a dephasing channel, D p p h ( ⋅ ) \mathcal{D}^{\rm ph}_{p}(\cdot) D p ph ( ⋅ ) , is given by
J ph ≔ ( D p p h ( ⋅ ) ⊗ I ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ = p ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + ( 1 − p ) d ∑ n = 0 d − 1 ∣ n n ⟩ ⟨ n n ∣ = 1 d ∑ n = 0 d − 1 ∣ n n ⟩ ⟨ n n ∣ + p d ∑ n ≠ m ∣ n n ⟩ ⟨ m m ∣ . \begin{align*}
\mathcal{J}^{\textrm{ph}} &\coloneqq (\mathcal{D}^{\rm ph}_{p}(\cdot) \otimes \mathcal{I}) \vert \Phi_{00}^{+} \rangle \langle \Phi_{00}^{+} \vert \\
&= p \vert \Phi_{00}^{+} \rangle \langle \Phi_{00}^{+} \vert + \frac{(1-p)}{d} \sum_{n=0}^{d-1} \ket{nn}\bra{nn} \\
&= \frac{1}{d} \sum_{n=0}^{d-1} \ket{nn}\bra{nn} + \frac{p}{d} \sum_{n \neq m} \ket{nn}\bra{mm}.
\end{align*} J ph : = ( D p ph ( ⋅ ) ⊗ I ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ = p ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + d ( 1 − p ) n = 0 ∑ d − 1 ∣ nn ⟩ ⟨ nn ∣ = d 1 n = 0 ∑ d − 1 ∣ nn ⟩ ⟨ nn ∣ + d p n = m ∑ ∣ nn ⟩ ⟨ mm ∣ . By comparison of matrix elements, one can see that this can be rewritten as
J ph = α ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + ( 1 − α ) d − 1 ∑ c = 1 d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ , \begin{align*}
\mathcal{J}^{\textrm{ph}} = \alpha \ket{\Phi_{00}^+}\bra{\Phi_{00}^{+}} + \frac{(1-\alpha)}{d-1} \sum_{c=1}^{d-1} \ket{\Phi_{0c}^+}\bra{\Phi_{0c}^{+}},
\end{align*} J ph = α ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ + d − 1 ( 1 − α ) c = 1 ∑ d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ , such that α = ( p + 1 ) / d \alpha = (p+1)/d α = ( p + 1 ) / d . To see this, consider
∑ c = 1 d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ = ∑ c = 1 d − 1 ( I ⊗ W 0 , c ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ ( I ⊗ W 0 , c † ) = ∑ c = 1 d − 1 ( I A ⊗ ∑ n = 1 d − 1 Ω c n ∣ n ⟩ ⟨ n ∣ ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ ( I ⊗ ∑ m = 0 d − 1 Ω − c m ∣ m ⟩ ⟨ m ∣ ) = ∑ c = 1 d − 1 ∑ n , m = 0 d − 1 Ω c ( n − m ) ( I ⊗ ∣ n ⟩ ⟨ n ∣ ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ ( I ⊗ ∣ m ⟩ ⟨ m ∣ ) = d − 1 ∑ c = 1 d − 1 ∑ n , m = 0 d − 1 ∑ i , j = 0 d − 1 Ω c ( n − m ) ( I ⊗ ∣ n ⟩ ⟨ n ∣ ) ∣ i i ⟩ ⟨ j j ∣ ( I ⊗ ∣ m ⟩ ⟨ m ∣ ) = d − 1 ∑ n , m = 0 d − 1 [ ∑ c = 1 d − 1 Ω c ( n − m ) ] ∣ n n ⟩ ⟨ m m ∣ . \begin{align*}
&\sum_{c=1}^{d-1} \ket{\Phi_{0c}^{+}}\bra{\Phi_{0c}^{+}} \\
&= \sum_{c=1}^{d-1} \big( \mathbb{I} \otimes W_{0,c} \big) \ket{\Phi_{00}^+}\bra{\Phi_{00}^{+}} \big( \mathbb{I} \otimes W^\dagger_{0,c} \big) \\
&= \sum_{c=1}^{d-1} \big( \mathbb{I}_A \otimes \sum_{n=1}^{d-1} \Omega^{cn} \ket{n}\bra{n} \big) \ket{\Phi_{00}^{+}}\bra{\Phi_{00}^{+}} \big( \mathbb{I} \otimes \sum_{m=0}^{d-1} \Omega^{-cm} \ket{m}\bra{m} \big) \\
&= \sum_{c=1}^{d-1} \sum_{n,m=0}^{d-1} \Omega^{c(n-m)} \big( \mathbb{I} \otimes \ket{n}\bra{n} \big) \ket{\Phi_{00}^{+}}\bra{\Phi_{00}^{+}} \big( \mathbb{I} \otimes \ket{m}\bra{m} \big) \\
&= d^{-1} \sum_{c=1}^{d-1} \sum_{n,m=0}^{d-1} \sum_{i,j=0}^{d-1} \Omega^{c(n-m)} \big( \mathbb{I} \otimes \ket{n}\bra{n} \big) \ket{ii}\bra{jj} \big( \mathbb{I} \otimes \ket{m}\bra{m} \big) \\
&=d^{-1} \sum_{n,m=0}^{d-1} \bigg[ \sum_{c=1}^{d-1} \Omega^{c(n-m)} \bigg] \ket{nn}\bra{mm}.
\end{align*} c = 1 ∑ d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ = c = 1 ∑ d − 1 ( I ⊗ W 0 , c ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ ( I ⊗ W 0 , c † ) = c = 1 ∑ d − 1 ( I A ⊗ n = 1 ∑ d − 1 Ω c n ∣ n ⟩ ⟨ n ∣ ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ ( I ⊗ m = 0 ∑ d − 1 Ω − c m ∣ m ⟩ ⟨ m ∣ ) = c = 1 ∑ d − 1 n , m = 0 ∑ d − 1 Ω c ( n − m ) ( I ⊗ ∣ n ⟩ ⟨ n ∣ ) ∣ Φ 00 + ⟩ ⟨ Φ 00 + ∣ ( I ⊗ ∣ m ⟩ ⟨ m ∣ ) = d − 1 c = 1 ∑ d − 1 n , m = 0 ∑ d − 1 i , j = 0 ∑ d − 1 Ω c ( n − m ) ( I ⊗ ∣ n ⟩ ⟨ n ∣ ) ∣ ii ⟩ ⟨ jj ∣ ( I ⊗ ∣ m ⟩ ⟨ m ∣ ) = d − 1 n , m = 0 ∑ d − 1 [ c = 1 ∑ d − 1 Ω c ( n − m ) ] ∣ nn ⟩ ⟨ mm ∣ . It can then be seen, using the sum of a geometric series, that
∑ c = 1 d − 1 Ω c ( n − m ) = { − 1 i f n ≠ m ( d − 1 ) i f n = m \sum_{c=1}^{d-1} \Omega^{c(n-m)} =
\begin{cases}
-1 & ~\mathrm{if}~n \neq m \\
(d-1) & ~\mathrm{if}~n=m
\end{cases} c = 1 ∑ d − 1 Ω c ( n − m ) = { − 1 ( d − 1 ) if n = m if n = m Therefore,
∑ c = 1 d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ = d − 1 d ∑ n = m d − 1 ∣ n n ⟩ ⟨ n n ∣ − 1 d ∑ n ≠ m ∣ n n ⟩ ⟨ m m ∣ . \begin{split}
\sum_{c=1}^{d-1} \ket{\Phi_{0c}^{+}}\bra{\Phi_{0c}^{+}} &= \frac{d-1}{d} \sum_{n=m}^{d-1} \ket{nn}\bra{nn} - \frac{1}{d} \sum_{n \neq m}\ket{nn}\bra{mm}.
\end{split} c = 1 ∑ d − 1 ∣ Φ 0 c + ⟩ ⟨ Φ 0 c + ∣ = d d − 1 n = m ∑ d − 1 ∣ nn ⟩ ⟨ nn ∣ − d 1 n = m ∑ ∣ nn ⟩ ⟨ mm ∣ . Inputting this into the above gives
J ph = α d ∑ n , m = 0 d − 1 ∣ n n ⟩ ⟨ m m ∣ + 1 − α d − 1 [ d − 1 d ∑ n = m d − 1 ∣ n n ⟩ ⟨ n n ∣ − 1 d ∑ n ≠ m d − 1 ∣ n n ⟩ ⟨ m m ∣ ] = [ α d + 1 − α d ] ∑ n = m d − 1 ∣ n n ⟩ ⟨ n n ∣ + [ α d − 1 − α d ( d − 1 ) ] ∑ n ≠ m d − 1 ∣ n n ⟩ ⟨ m m ∣ A B = 1 d ∑ n = m ∣ n n ⟩ ⟨ n n ∣ + p d ∑ n ≠ m d − 1 ∣ n n ⟩ ⟨ m m ∣ , \begin{split}
\mathcal{J}^{\textrm{ph}} &= \frac{\alpha}{d} \sum_{n,m=0}^{d-1} \ket{nn}\bra{mm} + \frac{1-\alpha}{d-1} \biggl[ \frac{d-1}{d} \sum_{n=m}^{d-1} \ket{nn}\bra{nn} - \frac{1}{d} \sum_{n \neq m}^{d-1}\ket{nn}\bra{mm} \biggl] \\
&= \bigg[ \frac{\alpha}{d} + \frac{1-\alpha}{d} \bigg] \sum_{n=m}^{d-1} \ket{nn}\bra{nn} + \bigg[ \frac{\alpha}{d} - \frac{1-\alpha}{d(d-1)} \bigg] \sum_{n \neq m}^{d-1}\ket{nn}\bra{mm}_{AB} \\
&= \frac{1}{d} \sum_{n=m} \ket{nn}\bra{nn} + \frac{p}{d} \sum_{n \neq m}^{d-1}\ket{nn}\bra{mm},
\end{split} J ph = d α n , m = 0 ∑ d − 1 ∣ nn ⟩ ⟨ mm ∣ + d − 1 1 − α [ d d − 1 n = m ∑ d − 1 ∣ nn ⟩ ⟨ nn ∣ − d 1 n = m ∑ d − 1 ∣ nn ⟩ ⟨ mm ∣ ] = [ d α + d 1 − α ] n = m ∑ d − 1 ∣ nn ⟩ ⟨ nn ∣ + [ d α − d ( d − 1 ) 1 − α ] n = m ∑ d − 1 ∣ nn ⟩ ⟨ mm ∣ A B = d 1 n = m ∑ ∣ nn ⟩ ⟨ nn ∣ + d p n = m ∑ d − 1 ∣ nn ⟩ ⟨ mm ∣ , if α = ( p + 1 ) / d \alpha=(p+1)/d α = ( p + 1 ) / d , the two equations are equivalent.
Qubits
Let ρ ∈ H 2 \rho \in \mathcal{H}^2 ρ ∈ H 2 . The qubit depolarising channel acting on ρ \rho ρ is given by
D p pol ( ρ ) = p ρ + ( 1 − p ) tr [ ρ ] I / 2. \mathcal{D}^{\textrm{pol}}_p(\rho) = p \rho + (1-p) \textrm{tr}\big[\rho\big] \mathbb{I}/2. D p pol ( ρ ) = pρ + ( 1 − p ) tr [ ρ ] I /2. The Kraus operators are
K 0 = 1 4 + 3 p 4 I , K 1 = 1 − p 4 X , K 2 = 1 − p 4 Y , K 3 = 1 − p 4 Z . \begin{align*}
K_0 &= \sqrt{ \frac{1}{4} + \frac{3p}{4}} \mathbb{I}, ~ ~ K_1 = \sqrt{ \frac{1-p}{4}} X, \\
K_2 &= \sqrt{ \frac{1-p}{4}} Y, ~ ~ K_3 = \sqrt{ \frac{1-p}{4}} Z.
\end{align*} K 0 K 2 = 4 1 + 4 3 p I , K 1 = 4 1 − p X , = 4 1 − p Y , K 3 = 4 1 − p Z . The Choi-state is the so-called isotropic state,
J pol = p ∣ Φ + ⟩ ⟨ Φ + ∣ + ( 1 − p ) I / 4 , \mathcal{J}^{\textrm{pol}} = p \ket{\Phi^+} \bra{\Phi^+}+ (1-p) \mathbb{I}/4, J pol = p ∣ Φ + ⟩ ⟨ Φ + ∣ + ( 1 − p ) I /4 , where ∣ Φ + ⟩ \ket{\Phi^+} ∣ Φ + ⟩ is the maximally entangled state,
∣ Φ + ⟩ = ∣ 0 ⟩ ∣ 0 ⟩ + ∣ 1 ⟩ ∣ 1 ⟩ 2 , \begin{align*}
\ket{\Phi^{+}} &= \frac{\ket{0}\ket{0}+\ket{1} \ket{1}}{\sqrt{2}},
\end{align*} ∣ Φ + ⟩ = 2 ∣ 0 ⟩ ∣ 0 ⟩ + ∣ 1 ⟩ ∣ 1 ⟩ , d-dimensional
The depolarising channel acting on a d d d dimensional Hilbert space, where ρ ∈ H d \rho \in \mathcal{H}^d ρ ∈ H d , is
D p pol ( ρ ) = p ρ + ( 1 − p ) I / d , \mathcal{D}^{\textrm{pol}}_p(\rho) = p \rho + (1-p)\mathbb{I}/d, D p pol ( ρ ) = pρ + ( 1 − p ) I / d , with
J pol = p ∣ Φ + ⟩ ⟨ Φ + ∣ + ( 1 − p ) I / d 2 . \mathcal{J}^{\textrm{pol}} = p \ket{\Phi^+} \bra{\Phi^+}+ (1-p) \mathbb{I}/d^2. J pol = p ∣ Φ + ⟩ ⟨ Φ + ∣ + ( 1 − p ) I / d 2 .
Jamiołkowski, A. (1972). Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics , 3 (4), 275–278. 10.1016/0034-4877(72)90011-0 Choi, M.-D. (1975). Completely positive linear maps on complex matrices. Linear Algebra and Its Applications , 10 (3), 285–290. 10.1016/0024-3795(75)90075-0