Skip to article frontmatterSkip to article content
Tutorial

Useful Tricks

Abstract

Some useful tricks that could prove useful in proofs

Contents:

Expectation Values Squared

Let AA be some operator and ψ\ket{\psi} be some state.

ψAψ2=ψψAAψψ\bra{\psi} A \ket{\psi}^{2} = \bra{\psi}\bra{\psi} A \otimes A \ket{\psi}\ket{\psi}

Moving Operators on Entangled States

Let AA be some operator and Φ+\ket{\Phi^{+}} be a bipartite maximally entangled state.

(AI)Φ+=(IAt)Φ+,(A \otimes \mathbb{I}) \ket{\Phi^{+}} = (\mathbb{I} \otimes A^{t}) \ket{\Phi^{+}},

where ()t(\cdot)^{t} is the transpose operation.

Proof

Let AA be some operator and Φ+=1diii\ket{\Phi^{+}} = \frac{1}{\sqrt{d}} \sum_{i} \ket{ii} be the bipartite maximally entangled state.

Consider the elements of the vector (AI)(Φ+)(A \otimes \mathbb{I}) \big( \ket{\Phi^{+}} \big) ,

kl(AI)(Φ+)=1dikl(AI)ii,=1dikAili,=1dikAiδli,=1dkAl.\begin{align*} \bra{kl} (A \otimes \mathbb{I}) \big( \ket{\Phi^{+}} \big) &= \frac{1}{\sqrt{d}} \sum_{i} \bra{kl} (A \otimes \mathbb{I}) \ket{ii}, \\ &= \frac{1}{\sqrt{d}} \sum_{i} \bra{k} A \ket{i} \bra{l}\ket{i}, \\ &= \frac{1}{\sqrt{d}} \sum_{i} \bra{k} A \ket{i} \delta_{li}, \\ &= \frac{1}{\sqrt{d}} \bra{k} A \ket{l}. \end{align*}

Consider the elements of the vector (IAt)(Φ+)(\mathbb{I} \otimes A^{t}) \big( \ket{\Phi^{+}} \big) ,

kl(IAt)(Φ+)=1dikl(IAt)ii,=1dikilAti,=1dilAtiδki,=1dlAtk,=1dkAl.\begin{align*} \bra{kl} (\mathbb{I} \otimes A^{t}) \big( \ket{\Phi^{+}} \big) &= \frac{1}{\sqrt{d}} \sum_{i} \bra{kl} (\mathbb{I} \otimes A^{t}) \ket{ii}, \\ &= \frac{1}{\sqrt{d}} \sum_{i} \bra{k}\ket{i} \bra{l} A^{t} \ket{i}, \\ &= \frac{1}{\sqrt{d}} \sum_{i} \bra{l} A^{t} \ket{i} \delta_{ki},\\ &= \frac{1}{\sqrt{d}} \bra{l} A^{t} \ket{k},\\ &= \frac{1}{\sqrt{d}} \bra{k} A \ket{l}. \end{align*}

If the elements of these two vector are the same, they must be the same vector. This completes the proof.

Alternative Bipartition of Entangled States

Let Φ+AB  HAHB\ket{\Phi^{+}}_{AB}~\in~\mathcal{H}_{A} \otimes \mathcal{H}_{B} be the maximally entangled stated between a space AA and BB. Let Φ+CD  HCHD\ket{\Phi^{+}}_{CD}~\in~\mathcal{H}_{C} \otimes \mathcal{H}_{D} be the maximally entangled stated between a space CC and DD

Φ+ABΦ+CD=Φ+(AC),(BD)\ket{\Phi^{+}}_{AB} \otimes \ket{\Phi^{+}}_{CD} = \ket{\Phi^{+}}_{(AC),(BD)}

where Φ+(AC),(BD)\ket{\Phi^{+}}_{(AC),(BD)} is the maximally entangled state between (AC)(AC) and (BD)(BD).

This can be generalised to more tensor products of the maximally entangled state, e.g

Φ+ABΦ+CDΦ+EF=Φ+(ACE),(BDF)\ket{\Phi^{+}}_{AB} \otimes \ket{\Phi^{+}}_{CD} \otimes \ket{\Phi^{+}}_{EF} = \ket{\Phi^{+}}_{(ACE),(BDF)}
Proof
Φ+AB=12(00AB+11AB)Φ+CD=12(00CD+11CD)\begin{align*} \ket{\Phi^{+}}_{AB} &= \frac{1}{\sqrt{2}} ( \ket{00}_{AB} + \ket{11}_{AB}) \\ \ket{\Phi^{+}}_{CD} &= \frac{1}{\sqrt{2}} ( \ket{00}_{CD} + \ket{11}_{CD}) \\ \end{align*}
Φ+ABΦ+CD=12(00AB+11AB)12(00CD+11CD)=12(0000ABCD+0011ABCD+1100ABCD+1111ABCD)\begin{align*} &\ket{\Phi^{+}}_{AB} \otimes \ket{\Phi^{+}}_{CD} \\ &= \frac{1}{\sqrt{2}} ( \ket{00}_{AB} + \ket{11}_{AB}) \otimes \frac{1}{\sqrt{2}} ( \ket{00}_{CD} + \ket{11}_{CD}) \\ &= \frac{1}{2} (\ket{0000}_{ABCD} + \ket{0011}_{ABCD} + \ket{1100}_{ABCD} + \ket{1111}_{ABCD}) \end{align*}

The labels on the BB and CC particles can then be swapped.

=12(0000ACBD+0101ACBD+1010ACBD+1111ACBD)\begin{align*} &= \frac{1}{2} (\ket{0000}_{ACBD} + \ket{0101}_{ACBD} + \ket{1010}_{ACBD} + \ket{1111}_{ACBD}) \\ \end{align*}

Rewriting the binary with

000,011,102,113,\begin{align*} 00 &\rightarrow 0, \\ 01 &\rightarrow 1, \\ 10 &\rightarrow 2, \\ 11 &\rightarrow 3, \\ \end{align*}

and grouping the spaces together gives

=12(00(AC)(BD)+11(AC)(BD)+22(AC)(BD)+33(AC)(BD))=Φ+(AB)(CD),\begin{align*} &= \frac{1}{2} (\ket{00}_{(AC)(BD)} + \ket{11}_{(AC)(BD)} + \ket{22}_{(AC)(BD)} + \ket{33}_{(AC)(BD)}) \\ &= \ket{\Phi^{+}}_{(AB)(CD)}, \end{align*}

completing the proof.

Generating a Maximally Entangled Basis

Given a maximally entangled bipartite state, Φ00+\ket{\Phi^{+}_{00}}, one can generate a complete maximally entangled basis using the Heisenberg-Weyl operators.

In a space of local dimenions dd, the Heisenberg-Weyl operators are defined as

Wa,b=UaVb=k=0d1Ωbkk+ak,W_{a,b} = U^{a}V^{b} = \sum_{k=0}^{d-1} \Omega^{bk} \ket{k+a}\bra{k},

where a,b  {0,1,,d1}a,b~\in~\{0,1,\ldots,d-1 \} and

U=k=0d1k+1k,  V=k=0d1Ωkkk,  Ω=e2πid.U = \sum_{k=0}^{d-1} \ket{k+1}\bra{k}, ~ ~ V = \sum^{d-1}_{k=0} \Omega^{k} \ket{k}\bra{k}, ~ ~ \Omega = e^{\frac{2 \pi i}{d}}.

UU and VV are XX and ZZ Pauli operators generalized to higher dimension.

The set of states,

{Φab+:a,b  {0,1,,d1}},\{ \ket{\Phi_{ab}^{+}} : a,b~\in~\{0,1,\ldots,d-1 \} \},

where Φab+=(IWa,b)(Φ00+)\ket{\Phi_{ab}^{+}} = (\mathbb{I} \otimes W_{a,b}) \big( \ket{\Phi^{+}_{00}} \big) then forms a complete maximally entangled basis.

Properties of Heisenberg-Weyl operators
(Wα,β)t=ΩαβWα,β,(Wα,β)=ΩαβWα,β,Wα,βWγ,δ=ΩβγWα+γ,β+δ=ΩβγαδWγ,δWα,β.tr[Wa,b]={nif (a,b)=(0,0)0if otherwise\begin{split} & (W_{\alpha, \beta}) ^ {t} = \Omega^{-\alpha \beta}W_{-\alpha, \beta}, \\ & (W_{\alpha, \beta}) ^ {\dagger} = \Omega^{\alpha \beta}W_{-\alpha, -\beta}, \\ & W_{\alpha, \beta}W_{\gamma, \delta} = \Omega^{\beta\gamma}W_{\alpha + \gamma, \beta + \delta} = \Omega^{\beta\gamma - \alpha\delta}W_{\gamma, \delta}W_{\alpha, \beta}. \\ & \textrm{tr}\big[ W_{a,b} \big] = \begin{cases} n & \mbox{if } (a,b) = (0,0) \\ 0 & \mbox{if } \textrm{otherwise} \end{cases} \end{split}

For qubits, the Heisenberg-Weyl operators are

W0,0=I,  W0,1=σz,  W1,0=σx,  W1,1=iσyW_{0,0} = \mathbb{I}, ~~ W_{0,1} = \sigma_{z}, ~~ W_{1,0} = \sigma_{x}, ~~ W_{1,1} = -i \sigma_{y}

Trace of Swap gate on two density operators

Let ρ,σ\rho, \sigma be density operators and SWAP\rm{SWAP} the swap gate.

tr[(ρσ)SWAP]=tr[ρσ]\textrm{tr} \big[ (\rho \otimes \sigma) \textrm{SWAP} \big] = \textrm{tr} \big[\rho \sigma \big]

This can be generalised further using the same proof technique as

tr[(ρ1σ2ω3)SWAP12SWAP13]=tr[ρσω],\textrm{tr} \big[ (\rho_1 \otimes \sigma_2 \otimes \omega_3) \textrm{SWAP}_{12} \textrm{SWAP}_{13} \big] = \textrm{tr}\big[\rho \sigma \omega \big],

where SWAPij\textrm{SWAP}_{ij} is a swap on the iith and jjth system.

Proof

Let

ρ=ijpijij,σ=klqklkl,\begin{align*} \rho = \sum_{ij} p_{ij} \ket{i} \bra{j}, \\ \sigma = \sum_{kl} q_{kl} \ket{k} \bra{l}, \end{align*}

be expansions of ρ \rho and σ \sigma in the computational basis, and note that

SWAP=nmnmmn.\textrm{SWAP} = \sum_{nm} \ket{n}\bra{m} \otimes \ket{m}\bra{n}.

First, the left hand side gives

tr[(ρσ)SWAP]=tr[(ijklpijqklijkl)nmnmmn]=tr[ijklnmpijqklimδjnknδml]=tr[inkmpinqkmimkn]=inkmpinqkm δimδkn=ikpikqki.\begin{align*} &\textrm{tr} \big[ (\rho \otimes \sigma) \textrm{SWAP} \big] \\ &= \textrm{tr} \bigg[ \bigg( \sum_{ijkl} p_{ij}q_{kl} \ket{i} \bra{j} \otimes \ket{k} \bra{l} \bigg) \sum_{nm} \ket{n}\bra{m} \otimes \ket{m}\bra{n} \bigg] \\ &= \textrm{tr} \bigg[ \sum_{ijkl} \sum_{nm} p_{ij}q_{kl} \ket{i} \bra{m} \delta_{jn} \otimes \ket{k} \bra{n} \delta_{ml} \bigg] \\ &= \textrm{tr} \bigg[ \sum_{inkm} p_{in}q_{km} \ket{i} \bra{m} \otimes \ket{k} \bra{n} \bigg] \\ &= \sum_{inkm} p_{in}q_{km} ~ \delta_{im} \delta_{kn} \\ &= \sum_{ik} p_{ik}q_{ki}. \end{align*}

The right hand side is then

tr[ρσ]=tr[(ijpijij)(klqklkl)]=tr[ijklpijqklilδjk]=tr[iklpikqklil]=iklpikqklδil=ikpikqki,\begin{align*} \textrm{tr} \big[\rho \sigma \big] &= \textrm{tr} \bigg[ \bigg( \sum_{ij} p_{ij} \ket{i} \bra{j} \bigg) \bigg( \sum_{kl} q_{kl} \ket{k} \bra{l} \bigg) \bigg] \\ &= \textrm{tr} \bigg[ \sum_{ijkl} p_{ij}q_{kl} \ket{i} \bra{l} \delta_{jk} \bigg] \\ &= \textrm{tr} \bigg[ \sum_{ikl} p_{ik}q_{kl} \ket{i} \bra{l} \bigg] \\ &= \sum_{ikl} p_{ik}q_{kl} \delta_{il} \\ &= \sum_{ik} p_{ik}q_{ki}, \end{align*}

completing the proof.